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ABSTRACT 

We give a brief description of the overall architecture 
of PICAP3. The enhanced processor module has full 
floating-point arithmetic and a 32 module machine will 
achieve a peak performance of 320 MFLOP. We show 
how the linear organization and the local address 
modification can be used efficiently for algorithms like 
FFT, Transposition, Histogramming, Convolution and 
Binary image processing. PICAP3 is orders of magni- 
tudes faster than most commercially available sys- 
tems. 

INTRODUCTION 

PICAP3 is a hardwarelsoftware low-budget project in 
parallel processing. Its roots are buried in a rather 
long tradition in computer design and architecture, 
most of it related to image processing and computer 
vbion. However, the architecture of PlCAP 3 has very 
little in common with its predecessors [I], [2], [3], [4]. 
The most salient features of PICAP3 are the following 
[5], [6]. See Figure 1. 

Linear processor - processor connec- 
tion. This is inexpensive and rather fast as 
long as the number of processors (P) is 
reasonably small. End-around word-wide 
bidirectional links constitute a quite powerful 
transportation highway as will be shown be- 
low. 

High speed Il0-communication. The lin- 
ear organization makes it possible to attain 
input/output bandwidths equal to the proc- 
essor/memory bandwidth. In the present im- 
plementation we are satisfied with a 40 
MBIs data rate which typically occupies 
5-10 % of available memory bandwidth. 

A powerful, carefully designed control 
unit. The control unit design is crucial. It 
has to supply the processor array with a 
constant flow of microinstructions, ad- 
dresses and constants. The present design 
is capable of translating a logical three- 
component address into a physical address 
at full memory cycle rate. 

SIMD (Single Instruction Multiple Data Local address modification. The globally 
stream). This was a natural decision since issued address from the control unit can be 
the main target applications were in low and modified locally. Table look-up functions is 
medium level image processing. just one of several exploitations of this fea- 

Coarse granularity. We deliberately ab- 
stained from customized VLSI-design. 
Therefore, to get as much processing 
power as possible per chip, each process- 
ing module is a 32-bit parallel ALU made 
from off-the-shelf components. 

Direct processor-memory interconnect. 
The power of all parallel architectures 
stems from a high memory bandwidth. We 
don't want to degrade this bandwidth by in- 
troducing an interconnection switching net- 
work. More importantly, such a network de- 
stroys the perfect modularity. 

ture. It considerably enhances the perform- 
ance of the SIMD-system and enlarges the 
space of amenable applications. Since it 
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has not been implemented in bit-serial 
SlMD arrays, the power of this feature is not 
generally well understood. 

A large memory, typically 4 MBlprocessor. 

Moderate physical size. A 32 module ar- 
ray fits on 8 PC-boards, the control, super- 
visory processor and network interface on 
another pair of PC-boards. 

The present operational PICAP3 prototype is de- 
scribed in [5]. It contains only two processors. Cur- 
rently we are designing an upgraded version of the 
processor module which will be described in the next 
section. For this design performance numbers from 
simulated execution will be given for a few algorithms. 

THE NEW PROCESSOR MODULE 

The new processor module is shown by Figure 2. All 
data paths are 32 bit and data transfers take place via 
the multi-ported register file RF (64 32-bit words). 
Global addresses and constants are pumped out from 
the control unit and enters the PE over the Global bus. 
This bus is bidirectional and may also be used to get 
values from the PEs. Once the address is inside RF, it 
may be modified by the ALU or directly used to ac- 
cess the memory. After two cycles data is available in 
the communication register (CR) and may be option- 
ally transferred (in one extra cycle) to the left or right 
neighbor. 

110 bus 
Memory 

ported register file serves the purpose of widening the 
data path from memory (5 MWIs) into a full seven bus 
system (70 MWIs). it also enables concurrent compu- 
tation and memory accesses. By proper allocation of 
input, intermediate and output operands this gives a 
processing speed of 10 MIPS or 10 MFLOPS per PE 

FFT 

The basic operation in most FFT operations is the ra- 
dix-2 butterfly. With each input being a two-word 
complex floating-point number (like the twiddle factor 
o) the butterfly is executed in 10 cycles (four multipli- 
cations and six additions). 

To bring the operands out and the result back to 
memory takes 16 cycles (four read and four write op- 
erations). However, this presumes that the coefficient 
o is brought forward as a global constant from the 
control unit. If not, we need two more memory cycles 
to get it from the local memory. This gives 20 cycles. 

Clearly, even if we use optimal overlap of memory and 
processor activity we are bounded by the memory ac- 
cess cycles when computing one butterfly at a time. 
When more than two points are included in each com- 
putation, the situation improves. An eight-point FFT is 
formed by 12 butterflies which takes 120 cycles. The 
intermediate results can be kept in the register file so 
that only 16 memory reads and 16 memory writes are 
needed. To pick up the us takes an extra 24 reads 
and a total of 112 cycles are needed for memory ac- 
cesses. 

The situation is now processor-bounded so that we 
obtain exactly 

1 M Butterfly/s (1 MBUTT) per PE 

Let us now assume that all input data for an N-point 
FFT reside in the local memory of the individual PE. A 
1024 complex input data FFT then takes 5.12 ms. As- 
suming a 32 processor system we obtain an efficient 
throughput of 

right 
left neigbor b-1- neighbor 

1024 complex input FFT in 0.16 ms 

Global bus 
Figure 2 

The arithmetical unit consists of a floating-point sub- 
unit, an integer subunit and an integer multiplier-accu- 
mulator, all three operating on 32-bit data. Both the 
register file and the ALUs are non-pipelined devices 
so that a full integer or floating-point operation can 
always be performed in one cycle time. The multi- 

The 2D FFT on a 512 x 512 complex data image is 
decomposed into two passes of 1 D FFTs over the col- 
umns of the image. The second pass is preceded by 
a transposition (see below) and the total time is 
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TRANSPOSITION. CORNER TURNING. 

Evidently, there are numerous cases in a parallel sys- 
tem where data has to be rearranged in order to pro- 
ceed with the computation in the most efficient way. 
One common operation is the so called corner turning 
which is illustrated by Figure 3 with an 8 x 8 matrix of 
data points. To beqin with the leftmost PE contains 
data points 0, 8, 16, 24, 32, 40, 48, 56. After the 
transposal it contains 0, 1, 2, 3, 4, 5, 6, 7. 

By proper use of local indexing we can move data 
over the leftlright neighbor network in a rather efficient 
manner.The main trick is to bring out those data 
points at the same time that are to be moved the 
same horizontal distance [4]. [5]. This is made possi- 
ble by local indexing. Note that the average distance 
data has to travel is Pl4. 

N 32-bit words can then be corner-turned in a 32 PE 
machine using 

N32 (4 + 3214) = N . 318 cycles 

where each word requires four cycles for memory ac- 
ceses. This formula translates directly to 19.7 ms for 
the complex 512 x 512 image in the previous section. 

Figure 3 

IMAGE PROCESSING 

We will briefly describe three algorithms; Histogram- 
ming, Convolution and Binary operations. 

Histogramming is performed as follows. In the first 
step all processors compute their local histograms. 
Two memory reads and one write are needed per 
pixel. Thus, to collect 32 local histograms of a 
512 x 512 image it takes 

6 . 512 . 16 = 49152 cycles or 4.92 ms 

histogram. Assume a simple case of four PE's and 8 
entries in the table as shown in Figure 4. 

Figure 4 

In the first pass, half of the 8 entries are moved one 
step and accumulated, in the next pass half of the 
remaining 4 entries are moved two steps and accumu- 
lated etc. With 32 PEs the total number of memory 
reads is 31N116, memory writes 31NI32, and shift 
steps 5N2. This totals 

N . 133116 = 2128 cycles or 0.21 ms 
for N = 256 (8 bitlpixel) 

We note that the merging time is negligible.The effec- 
tiveness of this merge procedure can be exploited in 
many other algorithms besides histogramming. 

Convolution. We will here show the very common 3 x 
3 filter. 

The image is distributed in slices over the PE's. The 
neighborhoods for the border pixels overlap to the 
neighboring PE's but the time penalty for fetching from 
left or right is negligible. We may now proceed as 
shown in Figure 5 by keeping an input buffer holding 
the nine latest used input pixels. 

Figure 5 

With this scheme, we see that there is only three 
The second Step is to merge these data into a single memory reads and one memory write per result. With 
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9 multiplylaccumulate and one final adjustment opera- 
tion using the integer multiplier-accumulator we will be 
able to do one 3 x 3 kernel operation in 10 cycles. 
Since the memory accesses take 8 cycles, the opera- 
tion is obviously processing bounded and the total 
execution time for a 512 x 512 image is 

Binary image processing. Using the integer ALU, the 
image data is packed ie a sequence of 32 vertical 
pixels is stored in one word. Without giving a full 
analysis, this can be done as fast as the pixels can be 
read out from the memory [5]. 

A 3 x 3 binary operation could now be executed as 
follows. See Figure 6 with the buffering method similar 
to Figure 5. Around the central 32 pixel word we put 
together a new 32-pixel word shifted one bit up and 
another one shifted one bit down. For each new set of 
32 3 x 3 neighborhoods these two operations have to 
be carried out which take four cycles [5]. 

cost, time and effort by using off-the-shelf compo- 
nents, we get simplicity in operation and control from 
the Single Instruction Multiple Data stream mode and 
we get high 110-bandwidth from the linear organiza- 
tion. 

The best illustration of these and other features of the 
machine is the following list of estimated processing 
times. All numbers are given for a 32 PE machine. 
Previous experience indicates that the real execution 
times are about 10 % slower mainly due to deficien- 
cies in the control unit. 

FFT 
1024 complex data 
512 x 512 complex data 

Transposition 512 x 512 8 bit data 
Histogramming 512 x 512 

8 bit pixel 
12 bit pixel 

Convolution 512 x 512, 16 bit pixel 
general 3 x 3 kernel 
Sobel 

Binary 51 2 x 51 2, packed data 
Expand, shrink per step 
Thin, per step 
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