
Bi-directional Recurrent MVSNet
for High-resolution Multi-view Stereo

Taku Fujitomi, Seiya Ito, Naoshi Kaneko and Kazuhiko Sumi
Aoyama Gakuin University

5-10-1 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa, Japan
{fujitomi.taku, ito.seiya}@vss.it.aoyama.ac.jp, {kaneko, sumi}@it.aoyama.ac.jp

Abstract

Learning-based multi-view stereo regularizes cost
volumes containing spatial information to reduce noise
and improve the quality of a depth map. Cost vol-
ume regularization using 3D CNNs consumes a large
amount of memory, making it difficult to scale up the
network architecture. Recent work proposed a cost-
volume regularization method that applies 2D convo-
lutional GRUs and significantly reduces memory con-
sumption. However, this uni-directional recurrent pro-
cessing has a narrower receptive field than 3D CNNs
because the regularized cost at a time step does not
contain information about future time steps. In this
paper, we propose a cost volume regularization method
using bi-directional GRUs that expands the receptive
field in the depth direction. In our experiments, our
proposed method significantly outperforms the conven-
tional methods in several benchmarks while maintain-
ing low memory consumption.

1 Introduction

Multi-view stereo (MVS) aims to recover 3D scenes
from multi-view images with known camera parame-
ters. It can handle a wide range of scenes and recon-
struct the scene as a point cloud without using depth
sensors. Therefore, it is useful to obtain 3D terrain
data from aerial photographs and to reconstruct the
general outdoor environment in detail. Most of the
MVS methods calculate the cost, which is the similarity
between the reference image and several neighboring
images, and predict the depth map at the viewpoint of
the reference image based on the cost. From the depth
maps of multiple viewpoints obtained by these pro-
cesses for all viewpoints, the 3D scene is reconstructed
based on the camera position and orientation of each
viewpoint as a point cloud.

Learning-based MVS processes the costs sampled on
a 3D grid known as the cost volume. The cost vol-
umes are an essential metric for inferring the depth
map. However, it often contains noise due to non-
Lambertian reflections or occlusions of objects in the
image, resulting in an inaccurate depth map. There-
fore, the cost volume regularization is applied to reduce
noise in the cost volume. The typical method for cost

volume regularization is using 3D CNNs, which regu-
larly process 3D information [7]. However, cost volume
regularization using 3D CNNs is known to consume a
large amount of GPU memory because it requires that
the costs of a large number of coordinates be stored in
GPU memory at once. Also, when the resolution of the
cost volumes is increased to improve the inference accu-
racy, the memory consumption grows cubically. There-
fore, high-resolution cost volume regularization using
3D CNNs is difficult.

To solve this scalability problem, R-MVSNet [8] has
been proposed. In this method, the 3D cost volume
is divided into hypothesis planes in the depth direc-
tion of the reference image viewpoint, and each plane
is regularized sequentially from front to back by gated
recurrent units (GRUs). This recurrent regularization
allows processing per plane, which significantly reduces
the GPU memory consumption for inference. Mean-
while, the cost volume regularization using 3D CNNs
enables depth prediction considering a wide range of in-
formation at all depths. However, the sequential cost
regularization by the uni-directional recurrent process-
ing has a narrower receptive field because the regular-
ized cost at a time step includes no information about
future time steps.

In this paper, we propose a cost volume regulariza-
tion using bi-directional GRUs. Our method regular-
izes cost volume, considering information about future
time steps. It performs with a wider receptive field
than R-MVSNet [8] and consumes less GPU memory
than regularization using 3D CNNs.

2 Related work

In recent years, many learning-based MVS ap-
proaches have been based on 3D volumes. Sur-
faceNet [9] first constructs colored voxel cubes (CVC)
for each view, where each voxel contains the RGB val-
ues of the input image. The two CVC are then fed
into 3D CNNs to obtain the probability on the sur-
face. Instead of directly predicting the 3D model, ap-
proaches to recovering the model through depth maps
have been proposed. They form cost volumes by plane
sweeping and regularize them using CNNs. One of the
representative methods is MVSNet [7], which encodes
camera geometries into the cost volumes by differen-
tial homography warping. Such an approach to in-

17th International Conference on Machine Vision Applications (MVA)
Fully Online, July 25–27, 2021.

© 2021 MVA Organization

P3-9



fer depth maps by cost regularization using 3D CNNs
consumes a large amount of memory because it re-
quires keeping the entire huge cost volumes in mem-
ory. Point-MVSNet [10] processes a point cloud recon-
structed from a coarse depth map obtained by small-
scale MVSNet [7]. The reconstructed point cloud is
processed by the PointFlow module that infers resid-
uals between the coarse depth map and an expected
dense depth map as a depth map refinement. CasMVS-
Net [2] proposed a coarse-to-fine approach to improve
depth sampling efficiency when generating the cost vol-
umes. R-MVSNet [8] uses 2D convolutional GRUs to
perform sequential cost regularization. It greatly re-
duces memory consumption since 3D volumes do not
need to be held entirely in memory at once.

3 Bi-directional Recurrent MVSNet

In this section, we describe the detailed architecture
of our network. The entire design of our proposed net-
work strongly borrows the ideas from R-MVSNet [8].

3.1 Network Architecture

In our proposed method, convolutional GRUs are
applied bi-directionally in the depth direction to the
cost volumes on the parallel planes divided on the ref-
erence camera frustum. The cost volumes have been
regularized by aggregating the bi-directional informa-
tion in each plane by a 2D convolutional layer. The
network architecture is shown in Fig. 1.

3.2 Convolutional GRU

For sequential regularization in the proposed
method, we use the convolutional GRU, which is the
GRU [1] extended to 2D CNN. Let C(t) be the t-th
cost map that divides the cost volume in the depth di-
rection. The output Cr(t) of the convolutional GRU is
formulated as:

Cr(t) = (1−U(t))⊗Cr(t− 1) +U(t)⊗Cu(t) (1)

where U(t) is the update gate that outputs the update
rate from the previous step, Cr(t− 1) is the output of
the previous step, ⊗ is the element-wise multiplication.
Also, Cu(t) is the current step that has been updated
and is represented by the following equation with W
and b as learnable parameters:

Cu(t) = σc(Wc ∗ [C(t),R(t)⊗Cr(t− 1)] + bc) (2)

where σc is a nonlinear function, which is the hyper-
bolic tangent function. R(t) is a forget gate that out-
puts the forget rate from the information in the pre-
vious step, [·] is the concatenation, and ∗ represents a
convolution operation. The forget gate and the update
gate are defined as:

R(t) = σg(Wr ∗ [C(t),Cr(t− 1)] + br) (3)

U(t) = σg(Wu ∗ [C(t),Cr(t− 1)] + bu) (4)

where σg is a nonlinear function, which is the sigmoid
function. The convolutional GRU propagating in the
reverse direction is represented by replacing by t − 1
with t+ 1.

Although the most basic convolutional GRU as de-
scribed above consists of a single unit, in our proposed
method, three layers of convolutional GRUs are applied
to enhance the regularization quality. Besides, Group
Normalization [5] is applied before each nonlinear func-
tion for more effective information propagation in the
recurrent process.

3.3 Aggregation of Two-way Output

The two-way output of GRUs is concatenated and
aggregated by a 2D convolutional layer. We denote the
forward and backward output as Cf

r (t) and Cb
r(t), then

the aggregated output Cr(t) is formulated as:

Cr(t) = Wa ∗ [Cf
r (t),C

b
r(t)] + ba (5)

where Wa and ba are learnable parameters. Also, Cf
r

and Cb
r share parameters.

Assuming the cost maps {C}D−1
0 , the receptive

fields of Cf
r (t) and Cb

r(t) in the depth dimension are
in the range [0, t] and [t,D− 1], respectively, and after
aggregation, the receptive field of Cr(t) will be in the
range [0, D − 1].

3.4 Depth Map Fusion

Depth maps inferred by multi-view images are fused
into a single point cloud using the camera parameters.
To enhance the quality of the reconstruction, the depth
maps are filtered by probability maps and checked for
geometric consistency before fusion.

The probability map is an image holding maximum
values in the depth direction of a probability volume
which is calculated by applying softmax to Cr. In the
probability map filtering , pixels in the depth map cor-
responding to each pixel in the probability map smaller
than the pre-defined threshold value will be filtered out.

For geometric consistency checking, we employ Dy-
namic Consistency Checking [6], which dynamically ag-
gregates geometric matching errors for all views, rather
than using a pre-defined strategy or parameters.

4 Implementation

4.1 Datasets

We use the DTU dataset [3], which is used to evalu-
ate MVSNet [7] and R-MVSNet [8], for training, vali-
dation and evaluation. DTU dataset is for indoor envi-
ronment and it consists of 124 scenes captured from 49
camera positions under 7 different lighting conditions.

To measure the reconstruction ability in outdoor en-
vironments, we also evaluate on the Tanks and Temples



Reference 

Image

Source

Images

Feature 

Extractor

W

…

…

Bi-directional GRUs

Cr(0)

Cr(1)

Cr(D− 1)

�(0)

�(1)

�(D− 1)

Ground Truth

Depth Map

… Probability 

Volume

One-hot

Loss

Softmax

W

Differential

Homography Warping
&

Variance Metric

Convolutional GRU

2D Convolutional

Layer

Figure 1. The design of our network. Extracted features from input images are warped into parallel planes on
reference camera frustum. We take the variance of corresponding warped features in all views as matching
costs. These costs are regularized by bi-directional GRUs in the depth direction to reduce noise and obtain
a probability volume. The probability is used for depth map inference and filtering in depth map fusion [6].

intermediate set [4]. This dataset consists of 8 scenes,
and 151 to 314 images per scene are used for recon-
struction.

4.2 Training

For training, we use the DTU training set [3], where
each scan contains 49 images with 7 different lighting
conditions. N = 3 images are used as input (one ref-
erence image and two source images) with image reso-
lution 640 × 512. The depth sample number is set to
D = 128, and the cost map is formed in the range of
[425mm, 937mm]. The learning rate is set to 0.001 and
multiplied by 0.9 for every 10,000 steps. We trained our
model on an NVIDIA TITAN RTX with a batch size
of 1 for 6 epochs. For validation, we use N = 5 images
as input.

5 Experiments

5.1 DTU Evaluation

In the evaluation on the DTU’s evaluation set [3],
22 scenes out of the total 124 scenes are used as the
evaluation set. The number of input images N is 5. We
fixed the input image resolution to 1, 600×1, 200. The
inference is performed in the range [425mm, 937mm]
with a depth sample size of D = 256. The threshold
for filtering by probability maps is set to 0.3. The
generated depth map size should be 1/4 of the reference
image size, due to the feature extractor.

Table 1. Quantitative results on DTU’s eval-
uation set [3]．In this experiments, we im-
plemented R-MVSNet [8] using Dynamic Con-
sistency Checking [6] and denoted it as R-
MVSNet+DC. The proposed method outper-
forms the conventional methods.

Distance Metric (mm)
Acc. Comp. Overall

MVSNet [7] 0.396 0.527 0.462
R-MVSNet [8] 0.385 0.459 0.422
R-MVSNet+DC 0.396 0.382 0.389
Ours 0.371 0.381 0.376

The experimental results on the distance metric are
shown in Table 1. It shows an improvement in accuracy
(Acc.), completeness (Comp.), and overall scores.

The reconstructed point clouds are shown in Fig. 3.
Our method recovered the parts that R-MVSNet [8]
had not been able to recover.

5.2 Tanks and Temples Benchmark

On the Tanks and Temples benchmark [4], the input
image size is set to N = 5 with the image resolution
of 1, 920 × 1, 080 or 2, 048× 1, 080. The depth sample
number is set to D = 256. The threshold for filtering
by probability maps is 0.3. The generated depth map
and probability map are bilinearly upsampled to 1/2 of
the reference image size and then used for point cloud
reconstruction.



(a) Family (b) Francis (c) Horse (d) Lighthouse

(e) M60 (f) Panther (g) Playground (h) Train

Figure 2. Reconstructed point clouds on the Tanks and Temples intermediate set [4] produced by our method.

Table 2. Quantitative results on the Tanks and Temples intermediate set [4]．These are evaluated in percentage
metric and higher is better．L.H. and P.G. stand for Lighthouse and Playground, respectively.

Percentage Metric (%)
Mean Family Francis Horse L.H. M60 Panther P.G. Train

MVSNet [7] 43.48 55.99 28.55 25.07 50.79 53.96 50.86 47.90 34.69
R-MVSNet [8] 48.40 69.96 46.65 32.59 42.95 51.88 48.80 52.00 42.38
R-MVSNet+DC 48.27 63.18 39.16 36.38 51.55 51.74 49.12 52.23 42.83
Ours 50.16 61.57 41.02 39.60 53.82 53.98 51.24 53.35 46.70

R-MVSNet+DC Ours R-MVSNet+DC Ours

Scan 32 Scan 49

Figure 3. Reconstruction results of point clouds
on DTU’s evaluation set [3].

The evaluation results of the proposed method are
shown in Table 2. Our method improved the percent-
age metric in all scenes except Family and Francis. The
reconstructed point clouds are shown in Fig. 2.

5.3 Running Time and GPU Memory Consump-
tion

We measured the running time and GPU memory
consumption of the proposed method and our imple-
mented R-MVSNet [8] during depth inference. The re-
sults are shown in Table 3. Both the running time and
GPU memory consumption of our method are about

1.3 times longer/larger than that of R-MVSNet [8].

Table 3. Comparison of running time and GPU
memory consumption. The image resolution is
set to 1, 600× 1, 200 for ours and R-MVSNet [8],
1, 600× 1, 184 for MVSNet [7].

Time (s) GPU Mem. (MB)
MVSNet [7] 1.32 17,389
R-MVSNet [8] 2.09 1, 993
Ours 2.79 2, 627

6 Conclusion

In this paper, we have presented an architecture
for learning-based multi-view stereo. Our proposed
method performs recurrent cost regularization in the
depth direction using bi-directional GRUs with shared
parameters. It aggregates the bi-directional outputs in
a convolutional layer to have a wider receptive field
in the depth direction than previous methods. In
experiments, our method outperformed conventional
methods on the DTU and Tanks and Temples bench-
marks [3, 4].



Acknowledgement

This work was supported by JSPS KAKENHI Grant
Number JP20J13300.

References

[1] K. Cho, et al.: “Learning Phrase Representations us-
ing RNN Encoder-Decoder for Statistical Machine Trans-
lation” Empirical Methods in Natural Language Pro-
cessing, pp.1724–1734, 2014.

[2] X. Gu, et al.: “Cascade Cost Volume for High-Resolution
Multi-View Stereo and Stereo Matching” Computer
Vision and Pattern Recognition, pp.2495–2504, 2020.

[3] R. Jensen, et al.: “Large Scale Multi-view Stereop-
sis Evaluation” Computer Vision and Pattern Recog-
nition, pp.406–413, 2014.

[4] K. Arno, et al.: “Tanks and Temples: Benchmarking
Large-Scale Scene Reconstruction” ACM Transactions

on Graphics, vol.36, no.4, pp.1–13, 2017.
[5] Y. Wu, et al.: “Group Normalization” European Con-

ference on Computer Vision, vol.11217, pp.3–19, 2018.
[6] J. Yan, et al.: “Dense Hybrid Recurrent Multi-view

Stereo Net with Dynamic Consistency Checking” Eu-
ropean Conference on Computer Vision, vol.12349, pp.674–
689, 2020.

[7] Y. Yao, et al.: “MVSNet: Depth Inference for Unstruc-
tured Multi-view Stereo” European Conference on Com-
puter Vision, vol.11212, pp.767–783, 2018.

[8] Y. Yao, et al.: “Recurrent MVSNet for High-resolution
Multi-view Stereo Depth Inference” Computer Vision
and Pattern Recognition, pp.5525–5534, 2019.

[9] M. Ji, et al.: “SurfaceNet: An End-to-end 3D Neural
Network for Multiview Stereopsis” International Con-
ference on Computer Vision, pp.2307-2315, 2017.

[10] R. Chen, et al.: “Point-Based Multi-View Stereo Net-
work” International Conference on Computer Vision,
pp.1538-1547, 2019.


