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Abstract 

Deep learning for semantic segmentation requires a 
large amount of labeled data, but manually annotating 
images are very expensive and time consuming. To over-
come the limitation, unsupervised domain adaptation 
methods adapt a segmentation model trained on a labeled 
source domain (synthetic data) to an unlabeled target 
domain (real-world scenes). However, the unsupervised 
methods have a poor performance than the supervised 
methods with target domain labels. In this paper, we 
propose a novel weakly supervised domain adaptation 
using super-pixel labeling for semantic segmentation. The 
proposed method reduces annotation cost by estimating a 
suitable labeling area calculated from the Entropy-based 
cost of a previously learned segmentation model. In ad-
dition, we generate the new pseudo-labels by applying 
fully connected Conditional Random Field model over the 
pseudo-labels obtained using an unsupervised domain 
adaptation. We show that our proposed method is a 
powerful approach for reducing annotation cost. 

1. Introduction 

Current deep convolutional neural networks for seg-
mentation require a large amount of labeled training data 
to achieve good results. Furthermore, their performance 
seems to scale linearly with an exponential increase of 
training data [1]. However, densely annotating image for 
segmentation is very expensive and time-consuming. For 
example, each Cityscapes [2] image on average takes 
about 90 minutes to annotate. To overcome the limitation, 
generating densely annotated images from rendered 
scenes, such as the Grand Theft Auto V (GTA5) [3] is 
useful. However, the large appearance gap (e.g., illumi-
nation, pose, and image quality) across simulated / real 
domains significantly degrades the performance of syn-
thetically trained models. 

In light of the above issues, unsupervised domain ad-
aptation for segmentation (CBST) [4] has been recently 
proposed to solve a domain gap between simulated 
(GTA5) and real-world (Cityscapes) domains, where 
pseudo-annotated unlabeled samples are added to the 
training set with no human cost at all. However, the un-
supervised methods have a poor performance than the 
supervised methods with target domain labels, because 
the unsupervised methods assume that the pseu-

do-annotated unlabeled samples are labeled correctly. 
Weakly-supervised supervision for segmentation have 

been known to reduce annotation cost on unlabeled data. 
Previous works for annotation have used point-clicks [5, 6, 
17], scribbles [6, 7], Pixel-level Rectangle [22], Pix-
el-level Block [8] to train semantic segmentation 
networks. Weakly-supervised domain adaptation for 
segmentation from synthetic data with pixel-level labels, 
and real-world scenes with only bounding-box labels has 
been recently proposed [9]. However, these methods 
don’t maximize the performance for segmentation but 
minimize human annotation effort. 

In this paper, we propose a novel weakly supervised 
domain adaptation using super-pixel labeling for seman-
tic segmentation, in which a human only has to 
hand-label a few, automatically selected, areas within an 
unlabeled image. The proposed framework reduces an-
notation cost by estimating a suitable labeling area 
calculated from the Entropy-based cost of a learned CNN 
and by generating the new pseudo-labels using fully 
connected Conditional Random Field (CRF) [10]. Com-
prehensive experiments show that the proposed method 
could reduce the annotation effort to 10%, while keeping 
95% of the mean Intersection over Union (mIoU) of a 
model that was trained with the fully annotated training 
set of Cityscapes. 

2. Related Works 

In this section, we briefly review the important works 
about the two most related tasks: unsupervised domain 
adaptation and weakly-supervised supervision for reduc-
ing annotation cost on unlabeled data. 

Unsupervised Domain Adaptation. Unsupervised 
domain adaptation is to transfer discriminative knowledge 
from one fully labeled source domain to unlabeled target 
domain [11]. Adversarial learning based methods reduce 
the gap between source and target domain [12, 13, 14]. 
Another important strategy for unsupervised domain 
adaptation [4] is based on self-training [15, 16] by learn-
ing labeled source samples and target data with 
pseudo-labels generated from a learned segmentation 
model. However, given a sufficient amount of data, 
models trained in a supervised way outperform any un-
supervised method. Because it is not possible to 
completely guarantee the correctness of the generated 
pseudo-labels. 
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Weakly-supervised supervision for segmentation. 
Weakly-supervised supervision for segmentation such as 
point-clicks [5, 6, 17], scribbles [6, 7], Pixel-level Rec-
tangle [22], Pixel-level Block [8] have been known to 
reduce annotation cost on unlabeled data. Annotations 
such as point-clicks or scribbles or Pixel-level Rectan-
gle/Block are faster to acquire than polygon annotation, 
which leads to a larger and more varied dataset at the 
same cost. Recently, some weakly supervised methods [9, 
17, 25, 26, 27] are presented to save the costs of anno-
tating ground truth.  Wang et all [9] proposed 
weakly-supervised domain adaptation for segmentation 
from synthetic data with pixel-level labels, and real-world 
scenes with only bounding-box labels. However, these 
methods are not effective labeling for maximizing the 
performance of a semantic segmentation method. 

3. Proposed method 

3.1 Weakly-supervised domain adaptation for 
segmentation 

 
Given a labeled source dataset and unlabeled target 

dataset, our objective is to reduce the annotation cost on 
the unlabeled target data for adapting a segmentation 
model trained on a labeled source domain to a target 
domain. In the case of unsupervised domain adaptation, 
the target ground truth labels are not available. Unsuper-
vised domain adaptation (CBST) [4] is carried out by 
alternately generating a set of pseudo-labels in target 
domain, and then fine tuning network based on these 
pseudo-labels and labeled source data. Jointly learning 
the segmentation model and optimizing pseudo-labels on 
the unlabeled target data are naturally difficult as it is not 
possible to completely guarantee the correctness of the 
generated pseudo-labels. The pseudo-labels are generat-
ed from the confident predictions of the segmentation 
model. Therefore, the pseudo-label generation has the 
missing value from the less confident predictions of the 
segmentation model. 

To overcome these problems, we propose a novel 
weakly supervised domain adaptation for effective pix-
el-level labeling in semantic segmentation. This 
minimizes human annotation effort while maximizing 
the performance of semantic segmentation. The proposed 
method reduces the annotation cost by estimating a suit-
able labeling area on the unlabeled target dataset 
calculated from the Entropy-based cost of a segmenta-
tion model learned on the labeled source dataset. A 
human annotator will hand label a few of the suitable 
labeling area and much more labeling areas will be ob-
tained automatically using the pseudo-labels generated 
from an unsupervised domain adaptation method (CBST) 
[4]. We propose three different strategies (Entropy, Edge, 
and Super pixel) for estimating a suitable labeling area in 
an image. 

Our proposed method starts after training the initial 
source network over a labeled source dataset. We present 
effective labeling strategies to reduce annotations at pix-
el-level using the initial source network. At a pixel-level, 
for each candidate image in the unlabeled target dataset, 
we identify the most uncertain super-pixels for annota-
tions. The uncertain super-pixels are identified using 
uncertainty measures computed at a pixel-level (de-
scribed later in this section). The human annotator will 
provide the true labels of the identified super-pixels. 

We combine the true labels annotated by a human an-
notator with the pseudo-labels generated from an 
unsupervised domain adaptation method (CBST) [4]. To 
further improve the pseudo-label, we apply fully con-
nected Conditional Random Field (CRF) model [10] 
over the pseudo-labels with the true labels of the identi-
fied pixels. The final pseudo-labels image is used for 
retraining the segmentation model in the unsupervised 
domain adaptation framework. The overview of our 
proposed method is given in Fig. 1. 
 
3.2 Effective labeling strategies 

 
We describe three different strategies (Entropy, Edge, 

and Super pixel) for computing uncertain super-pixels for 

Figure 1. Illustration of the proposed weakly supervised domain adaptation in semantic segmentation training. 
 



annotations in an unlabeled target image. We are compu-
ting both information measures for each pixel location 
individually given the a-posteriori probability distribu-
tions from an initial segmentation model trained on a 
labeled source domain. The uncertain super-pixels in the 
unlabeled target dataset are then annotated by a human 
annotator. Fig.2 shows the uncertain super-pixels using 
the three different strategies. 

 

Figure 2.  Visualization of the uncertain pixels using the 
three different strategies (Entropy, Edge, Super pixel). 

 
Entropy. Entropy is the most widely used information 

measure for computation of uncertainty [18]. Here, the 
data with the highest positive impact on the model’s 
performance is estimated to be the one where the poste-
rior probability distribution produces the highest entropy. 
Entropy is used as a measure of uncertainty, since its 
value is maximized when the model assigns each con-
sidered class the same probability and very small if the 
model is sure about its decision. The entropy 𝐻(𝑢,𝑣) at 
each pixel is computed as follows (see Fig.2 (c)). 

 
𝐻(𝑢,𝑣) ∶= − ∑ 𝑝𝑐

(𝑢,𝑣)
(𝑓(𝑥)) log (𝑝𝑐

(𝑢,𝑣)
(𝑓(𝑥))) 𝑐    (1) 

 
where 𝑝𝑐

(𝑢,𝑣)
(𝑓(𝑥)) denotes the probability score map 

belonging to the class c at a specific pixel position 
(𝑢, 𝑣) in an unlabeled image 𝑥. This probability distri-
bution is obtained from the initial segmentation model 
𝑓() trained on a labeled source domain. 

Edge based Entropy. The edge pixels inherently have 
high uncertainty, because the misclassification rate for 
pixels at object boundaries/edges is more when com-
pared to the other pixels in the image. To consider edge 
pixels for annotation, we give a higher weight to the en-
tropy of edge pixels. We use a Canny edge detector to 
identify edge pixels (see Fig.2 (d)), and the weighted 
entropy computed for edge pixels in a given image 𝑥 is 
obtained as follows. 

 
𝐻𝑒  

 ∶= − ∑ ∑ 𝑤𝑝𝑐
(𝑢,𝑣)

(𝑓(𝑥)) log (𝑝𝑐
(𝑢,𝑣)

(𝑓(𝑥)))  𝑐(𝑢,𝑣)    (2) 
where 𝑤 > 1 is the weight given to the edge pixels. For 

other pixels it is set to 1. 
Superpixels. In semantic segmentation, the neighbor-

ing pixels are highly likely to have a close relationship 
and share similar information. Therefore, they are likely 
to belong to the same semantic class. However, the en-
tropy of each pixel is calculated independently without 
considering this relationship. In order to take advantage 
of the spatial correlation in images, we use superpixels 
(SP) in an image. We use SLIC (Simple Linear Iterative 
Clustering) [19] to computing the superpixels in a given 
image (see Fig.2 (e)), and define the entropy at the su-
perpixel level as the sum of its pixel entropies (see Fig.2 
(f)). 
 
3.3 Superpixel annotation 
 
 Superpixel annotations enable workers to mark a 
group of visually related pixels at once. This can reduce 
the annotation time for background regions and objects 
with complex boundaries. We select the superpixels in 
order of high edge based entropy scores at the superpixel 
(which we described in section 3.2), and finally request 
their respective labels from a human annotator. Our su-
perpixel annotation interface is given in figure 3. The 
human annotator just choose a class label and click the 
superpixel on the image to annotate. 
 

Figure 3.  Superpixel annotation UI. Annotators are 
given several yellow areas to annotate by click. 
 
3.4 Generating the New Pseudo-labels with 

CRF 
 
We combine the true labels annotated by a human an-

notator with the pseudo-labels generated from an 
unsupervised domain adaptation method (CBST) [4]. The 
unsupervised domain adaptation method is carried out by 
alternately generating a set of pseudo-labels correspond-
ing to large selection scores (i.e., softmax probability) in 
target domain, and then fine tuning network based on 
these pseudo-labels and labeled source data. The gener-
ated pseudo-labels has the missing value from the less 
confident predictions of the network model. Especially, 
the initial segmentation model trained on a labeled source 
domain lead to miss-predictions for generating pseu-
do-labels. This is because the large appearance gap (e.g. 
appearance, scale, geological position, illumination, 
camera, etc.) across simulated/real domains significantly 
degrades the performance of the trained models. 

To further improve the pseudo-labels, we apply CRF 
model [10] over the pseudo-labels with the true labels 
annotated by a human annotator. The CRF establishes 
pairwise potential on all pairs of pixels in a given image. 
The CRF potentials incorporate smoothness terms that 
maximize label agreement between similar pixels, and 
can integrate more elaborate terms that model contextual 
relationships between object classes. In semantic seg-



mentation, the neighboring pixels potentially have a close 
relationship and belong to the same semantic class. The 
CRF propagate the true label information to the neigh-
boring pixels.  Fig. 4 shows the generated new 
pseudo-labels with CRF and the generated pseudo-labels 
by CBST in each round (The model training are repeated 
for multiple rounds). The black pixels in the pseu-
do-labels are assigned appropriate labels by CRF. 

 

Figure 4.  The examples of the new pseudo-labels with 
CRF and the pseudo-labels generated from CBST in each 
round. 

4. Experimental Results 

In this section, we evaluate our proposed method for 
semantic segmentation. We focus on adaptation cases 
from GTA5 [3] / SYNTHIA [20] to Cityscapes [2]. We 
evaluate the average mean Intersection over Union (mI-
oU) calculated on the validation dataset of Cityscapes. We 
use SYNTHIA-RAND-CITYSCAPES subset including 
labeled 9,400 (760 × 1280) images. GTA5 dataset in-
cludes annotated 24,966 (1052 × 1914) images captured 
from the GTA5. Cityscapes dataset contains 2,975 
(1024 × 2048) finely annotated training images along 
with 500 validation images. 

We compare other weakly supervised supervisions for 
segmentation: point-clicks [6], scribbles [6], Pixel-level 
Rectangle [22], Pixel-level Block [8], and Coarse anno-
tations [2]. We only annotate 10% and 50% pixel budget 
in each Cityscapes image using original ground truth for 
Pixel-level Rectangle, Pixel-level Block, and Our method 
(in order of high entropy scores). All weakly supervised 
supervisions show performance by using CBST [4] with 
ResNet-38 [23] as unsupervised domain adaptation in 
GTA5 / SYNTHIA to Cityscapes. The networks were 
pre-trained on ImageNet [21]. SGD has been used to train 
all the models by MXNET [24]. As parameters for CBST, 
we use the default values from the authors' public im-
plementation. The performance is evaluated over a 
hold-out validation dataset. 

Table1 gives experimental results of mIoU calculated 
on the validation dataset of Cityscapes (from GTA5). The 
baseline result (Fine annotation) is obtained using CBST 
with full ground truth (annotating all the pixels). Table2 
gives experimental results of mIoU calculated on the 
validation dataset of Cityscapes (from SYNTHIA). Ta-

ble3 gives the results of annotation average time in each 
Cityscapes image for all weakly supervised supervisions. 
Our method-10% pixel budget of full dataset can reduce 
the annotation effort to 10%, while keeping 95% of mI-
oU of a model that was trained with the fully annotated 
training set of Cityscapes. 

 

Annotation methods mIoU 

Point-clicks [6] 
Scribbles [6] 
Pixel-level Rectangle -50% [22] 
Pixel-level Rectangle -10% [22] 
Pixel-level Block -50% [8] 
Pixel-level Block -10% [8] 
Coarse annotation [2] 

46.4 
49.4 
56.5 
52.4 
56.4 
52.3 
50.7 

Our method -50% 
Our method -10% 

57.1 
54.9 

Fine annotation (Full Supervision) [2] 
CBST [4] (Unsupervised Learning) 

57.3 
45.2 

Table 1.  Weakly-supervised segmentation performance 
from GTA5 to Cityscapes. 
 

Annotation methods mIoU 

Point-clicks [6] 
Scribbles [6] 
Pixel-level Rectangle -50% [22] 
Pixel-level Rectangle -10% [22] 
Pixel-level Block -50% [8] 
Pixel-level Block -10% [8] 
Coarse annotation [2] 

42.7 
43.1 
48.5 
45.1 
48.4 
45.0 
43.7 

Our method -50% 
Our method -10% 

49.0 
46.9 

Fine annotation (Full Supervision) [2] 
CBST [4] (Unsupervised Learning) 

49.3 
42.5 

Table 2.  Weakly-supervised segmentation performance 
from SYNTHIA to Cityscapes. 
 

Annotation methods Time 

Point-clicks [6] 
Scribbles [6] 
Pixel-level Rectangle [22] 
Pixel-level Block [8] 
Coarse annotation [2] 

1 min 
2 min 
8 min 
7 min 
7 min [2] 

Our method 7 min 

Fine annotation (Full Supervision) [2] 90 min [2] 

Table 3.  Annotation average time in each Cityscapes 
image. 

5. Conclusion 

We have proposed a novel weakly supervised domain 
adaptation using super-pixel labeling for semantic seg-
mentation, in which a human only has to hand-label a few, 
automatically selected, areas within an unlabeled image. 
We have demonstrated our method’s performance on 
Cityscapes. We show that combining the Entropy-based 
cost of a learned CNN and the Pseudo-labels with CRF 
from an unsupervised domain adaptation method is a 
powerful approach for reducing annotation cost. This will 
help further research in other segmentation task such as 
instance segmentation. 
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