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Abstract

The variational autoencoder (VAE) has succeeded
in learning disentangled latent representations from data
without supervision. Well disentangled representations can
express interpretable semantic value, which is useful for
various tasks, including image generation. However, the
conventional VAE model is not suitable for data generation
with specific category labels because it is challenging to ac-
quire categorical information as latent variables. There-
fore, we propose a framework for learning label represen-
tations in a VAE by using supervised categorical labels as-
sociated with data. Through experiments, we show that this
framework is useful for generating data belonging to a spe-
cific category. Furthermore, we found that our framework
successfully disentangled latent factors from similar data of
different classes.

1 Introduction

Frameworks for learning data representations have been
actively researched in recent years. In particular, unsuper-
vised learning of useful embedded features of speeches [1]
and images [2] has led to performance improvements on
various tasks.

Among them, variational autoencoders (VAEs) [3] have
succeeded in disentangling data into a finite number of in-
tuitively interpretable representations without any supervi-
sion information. Each of the disentangled representations
depicts a semantic value, such as angle, thickness, width,
and height, for example, for handwritten characters.

Similar to autoencoders, VAEs consists of an encoder
that generates latent variables from data and a decoder that
reconstructs the data from the variables. The VAE acquires
a disentangled representation by assuming that the vari-
ables are generated from independent normal distributions.
VAEs have been applied to data generation tasks such as
speaker conversion [4] and image-to-image translation [5]
since they can generate data from human interpretable fac-
tors.

Various methods for improving naive VAEs have been
proposed. β-VAE [6] has succeeded in enhancing the dis-
entanglement of latent variables by increasing the regular-
ization weight. The original β-VAE has also been reported
to generate lower quality images, but this can be improved
using some learning techniques [7, 8].

While the VAE and β-VAE only consider continuous
latent variables, the Conditional VAE (CVAE) [9] consid-
ers conditional distributions with labels associated with the
data. The CVAE generates latent variables from data and
labels corresponding to data and reconstructs data from la-
tent variables and labels. The CVAE also predicts labels as
needed, which allows for training and data generation with-
out labels.

Although the VAE and β-VAE consider that latent vari-
ables follow one continuous distribution, the CVAE [9] al-
lows learning labels associated with data as a discrete latent
variable. CVAE predicts latent variables from data and la-
bels and reconstructs data from latent variables and labels.
It can also be trained without labels by predicting labels if
necessary.

The CVAE performs conditional generation by using cat-
egory labels externally. Joint-VAE [10], on the other hand,
successfully obtains general categorical factors by introduc-
ing discrete latent variables and their generating distribu-
tions. However, the correspondence between discrete latent
variables and the true category is undefined, and this is a
problem when generating data for a particular category.

Therefore, we propose a learning framework for joint
continuous and discrete latent variables with supervised cat-
egorical labels. In this case, we suppose that discrete latent
variables follow a label-specific distribution. This frame-
work allows for conditional generations with the desired
category label via trained models. This framework also al-
lows conditional generation with labels without any classi-
fier since the encoder can predict the labels.

In this paper, we introduce the learning method for the
Joint-VAE based model with supervised categorical labels.
Through experiments we show that this method can be used
to generate images conditioned by categories. We then ex-
amine the effect of supervised learning on class-confusing
data.

2 Related work

2.1 Vanilla VAE

Let X be a data set consisting of data x sampled from
distribution p(x). Vanilla VAE [3] acquires latent variables
z for x by maximizing the training objective:

LVAE(θ, φ) = Eqφ(z|x)[log pθ(x|z)]

−DKL(qφ(z|x)‖p(z)),
(1)
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where pθ(x|z) and qφ(z|x) are an encoder and decoder
of a VAE with learnable parameters θ and φ, respectively.
The first term of the objective is reconstruction error be-
tween x and generated data from z, and the second term
is the Kullback–Leibler (KL) divergence between the prior
and the encoder approximated by the posterior distribution.
Factor disentanglement is achieved by assuming the distri-
bution p(z) to be the standard normal distributionN (0, I),
which is uncorrelated in each dimension.

To calculate this objective function, we need to use the
“reparameterization trick” to sample z from q. The en-
coder represents the normal distribution by inferring the
mean µ(x) and standard deviation σ(x) instead of z di-
rectly from input data:

qφ(z|x) = N (µ(x),diag(σ(x))). (2)

Finally, the latent variables z are sampled by using inferred
µ, σ, and random variable ε ∼ N (0, 1):

zi = µi + σiε. (3)

In the case where the encoder outputs µ and σ, it is
straightforward to compute the KL divergence between
N (µ,diag(σ)) and N (0, I):

DKL(N (µ,diag(σ))‖N (0, I))

=
1

2

∑
i

(
1 + log σ2

i − µ2
i − σ2

i

)
.

(4)

2.2 Conditional VAE

The CVAE [9] focuses on conditional data generation us-
ing semi-supervised learning. In the CVAE, the encoder ap-
proximates the generative distribution of the latent variables
when data and labels are given, and the decoder approx-
imates the generative distribution of the data when latent
variables and labels are given. If necessary, semi-supervised
learning can be undertaken by inferring labels from the data.

Let y be a label associated with data x, then the objective
of CVAE is defined as

LCVAE(θ, φ) = Eqφ(z|x,y)[log pθ(x|z, y)]

−DKL(qφ(z|x, y)‖p(z)).
(5)

The CVAE requires labels in both the encoder and decoder.
Therefore, we need to predict labels of unlabeled data using
a classifier.

2.3 β-VAE

β-VAE [6] is a modification of vanilla VAE that adds a
hyperparameter β to penalize the KL divergence term:

Lβ-VAE(θ, φ) = Eqφ(z|x)[log pθ(x|z)]

− βDKL(qφ(z|x)‖p(z)).
(6)

A larger β > 1 improves the disentanglement of the
latent factor, but the reconstruction error will increase.

Some learning techniques have been developed to enhance
disentanglement without increasing reconstruction error.
Burgess et al. [7] proposed gradually increasing the upper
bound of the KL divergence term. Let the bound be Cz , and
the new objective is defined as

L(θ, φ) = Eqφ(z|x)[log pθ(x|z)]

− β|DKL(qφ(z|x)‖p(z))− Cz|,
(7)

where γ is a large positive value that forces the KL diver-
gence term to be near the bound Cz . By gradually increas-
ing Cz from a small value, the constraint of the KL diver-
gence term is weakened, and it is expected that the recon-
struction error will converge.

2.4 Joint-VAE

Joint-VAE [10] considers the case where latent variables
consist of continuous and discrete values. Discrete latent
variables are useful for representing categories, such as the
types of characters in handwriting. In Joint-VAE, discrete
latent variables that follow a discrete distribution can be ac-
quired without labels.

Assuming that continuous and discrete values are gen-
erated from different distributions, the objective function is
defined as

LJoint-VAE(θ, φ) = Eqφ(z,c|x)[log pθ(x|z, c)]
− β|DKL(qφ(z|x)‖p(z))− Cz|
− γ|DKL(qφ(c|x)‖p(c))− Cc|,

(8)

where z are the continuous latent variables, and c are the
discrete latent variables with the same number of dimen-
sions as the number of categories. The prior distribution
p(c) is assumed to be a discrete uniform distribution. In
this case, the KL divergence term can be calculated as

DKL(qφ(c|x)‖p(c)) =

n∑
i=0

ci log ci + log n (9)

where n is the number of categories. To reparameterize
discrete variables, the Gumbel-softmax reparameterization
trick [11] is used.

3 Proposed method

Joint-VAE can acquire categorical latent variables, but
the correspondence between discrete latent variables and
true categorical labels is undefined. To generate data be-
longing to the desired category, it is more useful to have the
discrete latent variables associated with labels.

Therefore, we propose a modification of Joint-VAE to
learn categorical factors with categorical labels. Suppose
the categorical label of x is y, then our objective is defined
as



LOurs(θ, φ) = Eqφ(z,c|x)[log pθ(x|z, c)]
− β|DKL(qφ(z|x)‖p(z))− Cz|
− γ|DKL(qφ(c|x)‖p(c|y))− Cc|.

(10)

The difference from the objective of Joint-VAE is that
the prior distribution p(c) for c is a categorical specific dis-
tribution p(c|y). Note that Joint-VAE considers general dis-
crete variables, but we consider discrete variables to repre-
sent only one categorical meaning like a class of data.

In this form, the KL divergence term for the supervised
categorical distribution can be computed by cross-entropy:

DKL(qφ(c|x)‖p(c, y)) = − log cy, (11)

where c has the same dimension as the number of classes,
and y is a category number.

4 Experiments

4.1 Architecture

We employ a simple encoder-decoder model for all ex-
periments. The encoder consists of 3 convolution modules
that have 32 filters, each 4x4 in shape. Convolved feature
maps are flattened and inputted into linear transformation
layers. The features compressed in 256 dimensions are lin-
early transformed into three latent vectors: mean, log vari-
ance, and categorical variable. As noted above, the mean
and log variance vectors are used to sample z by using the
“reparameterization trick.” Categorical variables reparam-
eterize into one-hot-like vectors that represent which cate-
gory the input data belongs to.

The decoder is simply a reversed encoder structure. All
convolution modules are replaced with transposed convolu-
tion modules. The decoder outputs images regularized by a
sigmoid function.

The ReLU activation function and batch normalization
follow after all convolution modules and linear modules
of the encoder and decoder except the last module. A
schematic diagram of this model is provided in Figure1.

4.2 Implementation details

We use the PyTorch1 framework for all implementations
of model training and evaluation. Details concerning the
parameters for training are as follows. We set β and γ to
30, and the maximum value of Cz to 5, which gradually
increases from 0 over 25k iterations. The maximum value
of Cc is set to 5 for training without labels, but 0 for train-
ing with labels to provide a strong constraint. With a batch
size of 64, we repeated training for 100 epochs. Adam [12]
is used as the optimizer, with the learning rate set to 10−3

and the other parameters maintained at the PyTorch default
values.

1https://pytorch.org

Figure 1. The architecture of the Joint-VAE
based model. The encoder outputs µ, σ, and α
and they are used for reparameterization. z are
continuous latent variables and c are categorical
latent variables, which are one-hot-like vectors.

4.3 Evaluation

We measured the reconstruction error for the test data
and observed the images generated from the latent vari-
ables. We use the model trained on the MNIST dataset with
and without categorical labels. Note that the Joint-VAE and
our method differ only in terms of the prior distribution of
categorical latent variables.

If reconstruction error is high, this suggests that variables
with different semantics are entangled. This can also be ob-
served in images generated by the decoders. So we ensure
that the images generated with different conditions of cate-
gories represent different characters.

Additionally, to examine the effect of disentanglement
of different characters that look similar, we experimented
with a dataset of Japanese characters. The dataset2 consists
of 73 different characters, some of which are very similar.
We observed the results of image generation with models
trained on this dataset.

4.4 Results

The reconstruction error for each training method is
shown in Table 1. We found that the reconstruction error
is reduced by using our proposed method. This suggests
that category labels have a positive effect on the disentan-
glement of variables.

2https://github.com/ndl-lab/hiragana_mojigazo
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Table 1. Reconstruction error KL divergence of
each training method. These values are calcu-
lated for the test data. Reconstruction errors are
average mean squared errors of pixels.

Method Rec. error KL divergence loss

VAE [3] 0.0068 18.930
β-VAE [6] 0.0219 4.903

Joint-VAE [10] 0.0251 4.958
Ours 0.0243 4.986

(a) Unsupervised (Joint-VAE) (b) Supervised (Ours)

Figure 2. Images generated using VAE. The im-
ages in each row are generated by fixing a cate-
gory c. The images in each column have the same
random contentious latent variables z and images
in each row have same a categorical latent vari-
able, which represents the class 0 to 9, from top
to bottom.

Images generated from latent variables that are fixed to
a specific category are shown in Figure 2. Looking at the
same row of images, images generated by the Joint-VAE
method have varied characters despite fixing the category.
This means that the type of character depends on the con-
tinuous latent variables z, not the categorical variables c.
On the other hand, our method can generate unique types of
characters independent of z. Furthermore, in our method,
the categorical latent variables correspond to one-hot repre-
sentations of labels, which allows us to generate the desired
character.

We show the results of image generation in Japanese
characters in Figure 3. For comparison, we focus on spe-
cific discrete latent variables corresponding to three similar
characters. It transpires that supervised learning can often
classify characters well.

5 Conclusion

We have proposed a learning framework for Joint-VAE
to learn with supervised labels. Through experiments it is
shown that this method can be used to generate data that be-
long to any desired category. We also found that the frame-
work can learn latent variables effectively even when simi-
lar data are included.

(a) Unsupervised (Joint-VAE)

(b) Supervised (Ours)

Figure 3. Japanese characters generated using
VAE. For comparison, we focus on a specific
discrete latent variables corresponding to similar
characters.

It would be interesting for future research to explore how
fixing the dimension of one or more variables impacts the
outcomes.
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