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Abstract

This paper presents an industry-ready descattering
method that is easily applied to a food production line.
The system consists of multiple sets comprising a linear
image sensor and linear light source, which are slanted
at different angles. The images captured by these sen-
sors, which are partially clear along the perpendicular
direction to the semsor, are computationally integrated
into a single clear image over the frequency domain.
We assess the effectiveness of the proposed method by
simulation and by our prototype system, which demon-
strates the feasibility of the proposed method on an ac-
tual production line.

1 Introduction

Foreign-object inspection for food production lines
is important for preserving the safety of products.
Inspection is required to be both fast and non-
destructive, to increase the productivity of a food fac-
tory. A typical approach is to put a light source and
a detector on the opposite sides of an object to see
through the object; however, the captured images are
blurred because of the scattering of the light. In this
paper, we aim to obtain a clear image of the transmis-
sive observation that is suitable for an existing produc-
tion line.

One of the traditional approaches for image restora-
tion is a deconvolution approach, whereby some priors
on the scene and the kernel are assumed [1, 2, 3, 4].
Unfortunately, the quality of the recovered image is
generally low because of the loss of high-frequency com-
ponents during the observation process. Another ap-
proach is to use a projector—camera system [5, 6, 7, 8]
to probe the light transport. Although the image qual-
ity is very high with this approach, it requires multiple
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observations of the same scene; hence, it is not straight-
forward to apply it to a production line. We take a
hybrid approach that is suitable for a production line
and conserves high-frequency detail.

In our approach, we simply use multiple sets com-
prising a linear image sensor and linear light source,
which are already used on the production lines. The
key point is that the sets of sensors and light sources
are slanted relative to the direction of the conveyor.
For each sensor, it is possible to obtain an image of the
moving subject by stacking the observations. This im-
age is blurred along the sensor direction but clear along
the perpendicular direction. Using different anisotrop-
ically clear images, we can computationally recover a
totally clear image.

The chief contribution of this paper is that it
presents the first industry-ready descattering method.
Our method can easily be applied to an production
line without any new components, simply by placing
two traditional linear sensors, each rotated by 445 de-
grees.

2 Line-scan imaging on a conveyor system

Line-scan imaging is common on production lines
because of its efficient mechanism. The imaging device
consists of a linear image sensor and linear light source
and outputs a single row of pixels per exposure. As
the objects on the conveyor pass in front of the sen-
sor, a two-dimensional(2D) image can be obtained by
stacking the captured rows, one by one, as shown in
Fig. 1.

A foreign object inspection usually observes the
light transmitted through the scanned subject. The
light that straightly passes straight through the sub-
ject forms a clear shape of the foreign object; however,
there is also scattered light, which blurs the image and
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Figure 1. Line scan imaging . A set, compris-
ing a linear light source and linear image sensor,
is installed on each side of a conveyor. Subjects
move on the conveyor, and the linear image sen-
sor measures the light transmitted through the
subjects. A 2D image is obtained by stacking the
linear images.

Scanning axis

Sensing axis Scanning axis

Linear
light source O

Linear
I | [122C SCNnsOr———— gy

Figure 2. Anisotropic descattering effect on line-
scan imaging. The scattered light is captured
along the sensing axis but not along with the
scanning axis.

makes it difficult to recognize the presence of the for-
eign object.

Because the scattering is diffusive, the blur is
isotropic in common 2D area imaging, whereas it
appears differently in line-scan imaging because of
its anisotropic illumination and sensing, as shown
in Fig. 2. The blur is similar to that of area imaging
along the sensing axis but less scattered light exists
along the scanning axis.

3 Descattering with multiple slanted linear
image sensors

In a single observation with the linear light source
and linear image sensor, the scattering blur still exists
along the sensing axis. We aim to develop a method of
isotropic descattering, from multiple partially descat-
tered observations, that is suitable for production lines.
To obtain the multiple images, the observations of
each object must be conducted at different orientations.
However, physically rotating the subject may degrade
productivity. Our key idea is a co-design of hardware
and algorithm. We use multiple sets comprising a lin-
ear light source and linear image sensor slanted at dif-
ferent angles (Fig. 3) and to computationally integrate
the multiple observations into one image (Fig. 4).
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Figure 3. Multiple slanted linear image sensors
for line-scan imaging. The observed images are
corrected and aligned.

3.1 Multiple slanted linear image sensors

We use multiple sensors to obtain differently blurred
images without rotating the subjects, to maintain pro-
ductivity. To enable subjects to keep moving along the
production line, we install the linear light sources and
linear image sensors slanted from the scanning axis,
as shown in Fig. 3. Suppose that we wish to sample
at K angles evenly. In line scanning, there is a re-
striction that the sensing axis must not be identical to
the scanning axis, or a 2D image cannot be obtained.
Therefore, we set the angle between the sensing and
scanning axes to be

2k +1

0 =K

, (1)

where £k =0,--- | K — 1.

Because the sensing and scanning axes are not or-
thogonal, the 2D images obtained may be skewed. We
correct the skew in the 2D images according to the
moving speed of the subject and the sensor bandwidth.
Alignment of the observations is necessary for the in-
tegration. This is possible by adjusting the synchro-
nization of the sensors according to the moving speed
of the subject. However, in this study, we placed some
markers at known positions to achieve the alignment
without the need for engineering work.

3.2 Image integration based on maximum
Fourier amplitude spectrum

We propose a method to recover a clear image from
the K observations with anisotropic blur, as shown in
Fig. 4. We formulate the blurring in the Fourier domain
to cope with this anisotropicity.

We first consider the isotropic case. Suppose that
the isotropic blur is caused by diffusive scattering and is
spatially invariant. The blurring process is formulated
as a convolution of a clear image f(z,y) and Point
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Figure 4. Integration in the Fourier domain. Ap-
plying Fourier transform to the observed images,
K images are obtained. For each frequency in the
Fourier-transformed image, the component with
the maximum amplitude among the K images is
selected and integrated into a single image. The

integrated clear image is recovered by applying
inverse Fourier transform.

Spread Function (PSF) h(z,y) [1].

g(x,y) = f(z,y) * h(x,y), (2)

where g(x,y) is the blurred image and * is a convo-
lution operator. The PSF depends on the properties
of the scatterer, such as its material and thickness. It
also depends on the imaging process. When the scat-
tering is diffusive, h(z,y) is isotropic in standard area
imaging.

However, it becomes anisotropic when a linear image
sensor and light source are used. The PSF is formu-
lated as a function of the angle € of the sensing direc-
tion. The k-th observation, with angle 0y, is formulated
as,

gr(r,y) = f(z,y) * hi(z,y). (3)

In the Fourier domain, the blurring process is in-
terpreted as a decay of the high-frequency compo-
nents. In isotropic blurring, the high-frequency com-
ponents of the Flh(z,y)] are close to zero, where F
denotes the Fourier transform operator. In addition,
the high-frequency components of F[hy(x, y)] are small
along the sensing direction. Therefore, each of the
anisotropic images maintains the high-frequency com-
ponents along a different direction. If they can be com-
plementary to each other, the blur can be mitigated
by aggregating the remaining high-frequency compo-
nents. As the aggregation operator, we adopt max in
the Fourier domain.

Applying the Fourier transform to Eq. (3), the equa-
tion becomes

Flor(z,y)] = Flf (2, y) * hi(z,y)]
Gi(u,v) = F(u,v)Hg(u,v), (4)
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Figure 5. Performance analysis by simulation.

where G, F', and H are the Fourier transforms of g,
f and h, respectively. For each pixel (ug,vg) of the
integrated image in frequency domain G, we assign the
component with the maximum amplitude among the
K images.

G (uo,v0) = G (ug, vo)
k' = arg max |Gk('Uf07'UO)‘
k

V(uo,v0) € (u,v). (5)

Finally, the integrated clear image g is obtained by
applying the inverse Fourier transform:

g(a,y) = F 1 G(u,v)]. (6)
4 Simulation

The performance of the descattering depends on the
number of observations. We clarified the relationship
between them by simulation. We simulated line-scan
imaging by convolving a blur kernel onto a clear image
of size 512 x 512, using Eq. (2). To simulate the blur
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Figure 6. Prototype system.

in the k-th observation, we applied a 1 x 63 rectan-
gular window mask, slanted at an angle of 6, for an
isotropic 2D Gaussian blur kernel with ¢ = 21 in the
spatial domain. We also simulated the blurred image
with the kernel without masking, which corresponds to
observation using area imaging, for reference. We eval-
uated the descattering performance by calculating the
zero-normalized cross-correlation (ZNCC) between the
clear and recovered images.

The results are shown in Fig. 5. We used the four im-
ages shown in Fig. 5(a). Figure 5(b) shows the observa-
tions from simulated line-scan imaging and the recov-
ered image for various numbers of observations: K =
1,2,4, and 8. Figure 5(c) shows the ZNCC for area
imaging and for line-scan imaging with K =1,--. ,12.

The results show that the ZNCC for line-scan imag-
ing, even with K = 1, is significantly better than that
for area imaging. They also show that the ZNCC de-
pends on the subject. The proposed method is more ef-
fective for complex-shaped and high-contrast subjects,
such as ‘Mosquito’ and ‘Orange.” Generally, increasing
the number of observations K improves the quality of
the recovered image. The benefit becomes smaller as
K increases, whereas the cost increases linearly with
K. Therefore, K = 2,3 would be ideal for practical
use.

5 Prototype system

We developed a prototype system with two pairs
comprising a linear image sensor and near infrared light
source, as shown in Fig. 6. The sensors were installed
in the system rotated by £45 degrees.

Figure 7 shows the observations and preprocessing
for a white acrylic plate with a black plastic piece.
The left column shows that the captured images are
skewed and misaligned. The preprocessing described
in Sec. 3.1 was executed to correct the skew and align
the images as shown in the middle column. The right
column shows the result of the proposed method.

We measured foreign objects in real foods as shown
in Fig. 8. Three black plastic pieces were used as for-
eign objects, and a cracker and a slice of bread were
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Figure 7. Images from two linear image sensors
and the result of the proposed method. Left: The
subject is skewed and misaligned in the captured
images. Middle: Skew correction and alignment
have been applied. Right: Result of proposed
method.
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Figure 8. Results with real food, showing that
our proposed method worked successfully in the
prototype system and high-frequency detail was
obtained.

placed on these objects. The results show that the for-
eign objects were significantly blurred along the sens-
ing axis in each of the captured images. However, the
proposed method worked successfully to clarify the sil-
houettes of the foreign objects in the real foods.

6 Conclusion

In this paper, we propose a co-design of hardware
and algorithm for foreign object inspection. The design
can easily be installed in a production line with line-
scan imaging. It enables a clear image to be obtained
by computationally integrating multiple line-scan im-
ages slanted at different angles. We assessed the effec-
tiveness of the proposed method by simulation. We
also constructed a prototype system, which demon-
strated the feasibility of the proposed method on an
actual production line.
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