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Abstract

Single image deraining is an important yet challeng-
ing task due to the ill-posed nature of the problem to de-
rive the rain-free clean image from a rainy image. In this
paper, we propose Recurrent RLCN-Guided Attention Net-
work (RRANet) for single image deraining. Our main tech-
nical contributions lie in threefold: (i) We propose rectified
local contrast normalization (RLCN) to apply to the input
rainy image to effectively mark candidates of rain regions.
(ii) We propose RLCN-guided attention module (RLCN-
GAM) to learn an effective attention map for the deraining
without the necessity of ground-truth rain masks. (iii) We
incorporate RLCN-GAM into a recurrent neural network
to progressively derive the rainy-to-clean image mapping.
The quantitative and qualitative evaluations using repre-
sentative deraining benchmark datasets demonstrate that
our proposed RRANet outperforms existing state-of-the-art
deraining methods, where it is particularly noteworthy that
our method clearly achieves the best performance on a real-
world dataset.

1 Introduction

Single image deraining is a highly ill-posed task to re-
move the rain from a single rainy image and has been treated
as a significant process, since the rain-degraded images may
disturb many high-level computer vision tasks, such as ob-
ject detection [10], video surveillance [11], and autonomous
driving [1]. Various deraining methods based on a phys-
ical or a subjective prior on rain streaks have been pro-
posed [2, 9, 24]. However, these prior-based methods have
limited applicability for the images captured under com-
plex real rainy situations. On the other hand, data-driven
learning-based deraining methods based on a convolutional
neural network (CNN) have recently demonstrated their su-
perior performance for synthetic and real-world benchmark
datasets (see [7, 22] for reviews).

In this paper, we propose Recurrent RLCN-Guided At-
tenion Network (RRANet) based on an encoder-decoder ar-
chitecture to deal with single image deraining. Firstly, we
propose rectified local contrast normalization (RLCN) to
apply to the rainy image and exploit the calculated RLCN
image as an additional deraining network input and a guide
to learn an attention map, where RLCN is applied to extract
the pixels having a higher pixel intensity than the average
pixel intensity of neighborhood pixels in the local window.
We find that, since rain streaks usually show a higher pixel
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Figure 1: Three examples of (a) input rainy images,
(b) our proposed RLCN images, (c) our proposed
RLCN-guided attention maps, and (d) our deraining
results

(a) Input rainy image

intensity, the extracted pixels by RLCN cover almost all
candidates of the rain regions. Meanwhile, with the contrast
normalization within a local window, weak rain regions are
extracted as well as strong rain regions (see Fig. 1(b)), con-
tributing to a highly capable network.

Secondly, we propose an RLCN-guided attention mod-
ule (RLCN-GAM) which utilizes the RLCN image as a
guide to learn an attention map for the deraining. RLCN-
GAM is able to generate an effective attention map, where
the rain streaks and their surrounding regions have high at-
tention scores, while the other regions have low attention
scores (see Fig. 1(c)). Unlike the methods in [17, 20, 21]
which learn a rain mask or rain attention map directly using
ground-truth rain mask supervision, our proposed RLCN-
GAM does not require any supervision, enabling better gen-
eralization for real-world rainy situations.

Finally, inspired by [8, 13, 14], we introduce an RNN
framework to divide the network training into multiple
stages and progressively remove the rain. In order to ef-
fectively adopt the RNN into an encoder-decoder architec-
ture, we propose to introduce a residual block with an Long
short-term memory (LSTM) layer into the encoder part of
the network to effectively encode the features using the
RLCN image. We also apply our proposed RLCN-GAM
for every recurrent stage.

In the experiments, we compare our proposed RRANet
with state-of-the-art single image deraining methods, in-
cluding some of the above-mentioned methods [8, 13, 14,
17, 20], using six representative deraining datasets for syn-
thetic or real situations. The experimental results demon-
strate that RRANet outperforms the state-of-the-art meth-
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Figure 2: Overview of our proposed RRANet and its components.

ods. In particular, it clearly achieves the best performance
on a real-world dataset, exhibiting a strong generalization
capability under intricate real-world scenarios.

2 Proposed RRANet
2.1 Overall Architecture

Figure 2(a) illustrates the overall network architecture
of our proposed RRANet. RRANet is based on a re-
current encoder-decoder architecture, where the whole de-
raining process is separated into multiple stages. For the
encoder-decoder architecture, we apply U-Net [15] with
long-range (encoder-to-decoder) and short-range (residual
block) shortcut connections.

We first calculate the RLCN image L from the input
rainy image I to extract the information suggesting rain re-
gions, which will be detailed in Sec. 2.2. For each recurrent
stage ¢ of the network, the channel-wise concatenation of I,
L, and B;_;, which denotes the output image of the pre-
vious stage ¢ — 1, is used as the network input, where we
set Bg = I for the first stage. For the encoder part, the in-
put firstly passes through a 3 x 3 convolutional layer. As
shown in Fig. 2(d), the extracted features are then encoded
with a residual recurrent block (RRB), whose details will be
introduced in Sec. 2.4. The output features of RRB is then
downsampled with a 2 x 2 max pooling, which are send to
the next scale of the encoder.

For the decoder part, the output features of the last RRB
are fed to an upsampling layer as shown in Fig. 2(b). Then,
as shown in Fig. 2(c), the decoded features FP, the features
from the encoder of the same scale F', and the downsampled

RLCN image is send to the proposed RLCN-GAM to gen-
erate a spatial attention map M to derive attentive mapping
regions and generate the re-weighted features F/ = M o F,
where details will be introduced in Sec. 2.3. The features F’
is concatenated with F© and send to a residual block (RB).
The output features of RB are then fed to the next upsam-
pling layer and these processes are repeated three times to
recover the original spatial resolution.

The output feature maps of the last RB in the decoder
part then passes through a 1 x 1 convolutional layer to gen-
erate the negative rain layer, which is added with the input
rainy image I to derive the derained background image B,
of the current stage ¢. Then, the current output B, is used
as the input of the next stage ¢t 4+ 1 and the overall network
flow is repeated until the iteration reaches the maximum re-
current time V. For the loss function to optimize the whole
network parameters, we simply apply the negative structural
similarity index measure (SSIM) loss using the last stage
output B;_ , which can be represented as

L =—-SSIM(Bi=n,Begr) (D
where B denotes the groundtruth rain-free image.
2.2 RLCN
We propose RLCN based on the LCN [6] as
TEPEE D EVES TR

where L is the RLCN image, (4, j) denotes the pixel coordi-
nate, ¢ € (R, G, B) represents the color channel, I is c-th



channel of the input rainy image, u1(¢, ) denotes the mean
pixel intensity within a local square window centered at the
pixel (i,j), o1(i,j) denotes the standard deviation of the
pixel intensities within the local window, € is added for nu-
merical stability, and max (-, -) is the rectification function
outputting the maximum between the two elements.

In Eq. (2), the subtracted value, I(¢,7) — pr(4,5), takes
a high absolute value if the intensity of the pixel (i, 7) is
significantly higher or lower than its neighbor pixels within
the local window. As we focus on the rain, which usually
shows a higher pixel intensity, we apply the rectification
function to filter out negative values. The positive value
after the rectification is further normalized by the standard
deviation o7y(4, j), which corresponds to local contrast, to
enable the extraction of the pixels for weak rain regions as
well as strong rain regions.

As show in Fig. 1(b), the derived RLCN image can cover
most of the rain regions and thus can be used as a guide to
learn the deraining network. However, since the RLCN im-
age still contains non-rain edges and cannot be directly used
as a rain mask, we learn an attention map by our proposed
RLCN-GAM as detailed below.

2.3 RLCN-GAM

We propose RLCN-GAM to adapt the RLCN image as a
soft attention map that assigns high attention scores to the
pixels around rain regions while suppressing the scores for
the high-value non-rain pixels in the RLCN image. RLCN-
GAM is based on a self-additive attention module [12]. Fol-
lowing the mathematical symbol notations in Fig. 2(a) and
Fig. 2(c), RLCN-GAM is expressed as

M, = ¢o(Wh (¢ (W, F,+ WP« FP t WEL,))),
3)
where M is the attention map for scale s of the U-Net,
F, and F2 represent the features from the encoder and the
decoder, respectively, and L is the RLCN image. W and
WP denote the weights for 1x 1 convolutional layers, while
W; denotes the weight for the 3 x 3 convolutional layer to
extract the features from the RLCN image. The convolu-
tion operation is expressed as *, and the resultant features
are combined by the element-wise summation. Then, the
rectified linear unit (ReLLU) [4] function ¢ is applied to the
combined features, which followed by a one-channel 1 x 1
convolutional layer with the weight W to sum up the n-
channel feature maps. The sigmoid activation function oy
is then applied to derive the attention map within the range
of [0, 1]. Finally, using the obtained attention map, the re-
weighted features F’, is derived as F, = M, o F, where
o denotes the channel-wise and pixel-wise multiplication.
As shown in Fig. 1(c), our proposed RLCN-GAM can
effectively generate the attention map, where rain streak re-
gions show high attention scores while other edge regions
appeared in the RLCN image of Fig. 1(c) have low atten-
tion scores, enabling substantially meaningful distinction
between the attentive regions around the rain and non-rain
backgrounds.

2.4 Recurrent Framework with RRB

We here introduce our recurrent framework incorporat-
ing the RLCN input and the RLCN-GAM. First, as shown
in Fig. 2(d), we introduce Convolutional LSTM [19] to each
RBs [5] of the encoder to share the information across suc-
cessive recurrent stages. As the information flow of LSTM,
the hidden state output of stage ¢ — 1, denoted as H!~!, and
the features from the first convolutional layer are sent to the
LSTM layer, where the gating signal inside LSTM decides
which part of the information is preserved or thrown away.
Then, the LSTM layer outputs the hidden state of current
stage ¢, denoted as H*, which is used as the input of the
second convolutional layer and also sent to the RRB of the
next stage ¢t + 1. By applying LSTM, the information is
effectively shared across successive recurrent stages.

3 Experimental Results
3.1 Datasets

Synthetic datasets: Five synthetic benchmark datasets,
Rainl0O0OH [21], Rain200H [21], RainlOOL [21],
Rain200L [21], Rain800 [23] with pairs of rainy and
groundtruth rain-free images are used to train and evaluate
our RRANet. Rain100H/200H synthesize the heavy rain
conditions, while Rain100L/200L synthesize the light
rain conditions. Rain800 is another synthesized dataset
containing both heavy and light rainy images.

Real-world datasets: SPA-Data [17] is used to evaluate
the generalization of our RRANet to real-world scenarios,
which contains high-quality 638492 training and 1000 test
image pairs generated using video redundancy of real-world
rainy videos and human supervision.

3.2 Comparison on Synthetic Datasets

Compared methods: We evaluate our RRANet on
five synthetic datasets, Rain100H, Rain200H, Rain100L,
Rain200L, and Rain800, by comparing it with state-
of-the-art methods including high-frequency-component-
based DDN [3], semi-supervised SIRR [18], rain-mask-
based JORDER-E [20], model-driven RCDNet [16], and
RNN-based RESCAN [8], PReNet [14], and BRN [13].
RCDNet and BRN are very recent state-of-the-art methods.
All the methods are retrained with their original settings un-
less the pretrained models are provided.

Results: Table 2 reports the PSNR and the SSIM re-
sults. We can see that our RRANet provides good results
with the other compared methods on each dataset, espe-
cially on Rain100H, Rain200L and Rain800, showing the
strong adaptability of RRANet under different rain condi-
tions. Compared to existing rain-mask-based JORDER-E
and RNN-based methods (RESCAN, PReNet, and BRN),
our RRANet shows significant performance improvements.
From Fig. 4, we can see that only our RRANet can re-
cover the details of the bridge, which are highly occluded



Table 1: Quantitative comparison on synthetic datasets (Red: rank 1st; Blue: rank 2nd)

Dataset Rain100H Rain200H Rain100L Rain200L Rain800
Metrics PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR  SSIM
DDN [3] 26.79 0.814 26.10 0.807 34.61 0.959 34.39 0.960 25.47 0.836
RESCAN [§] 28.82 0.867 27.95 0.862 38.09 0.980 38.43 0.982 28.36 0.872
SIRR [18] 22.03 0.714 22.17 0.726 32.31 0.926 32.21 0.931 22.73 0.762
PReNet [14] 30.31 0.910 29.47 0.907 37.21 0.978 37.93 0.983 26.82 0.888
JORDER-E [20] 30.22 0.898 29.23 0.894 39.36 0.985 39.13 0.985 27.92 0.883
RCDNet [16] 31.26 0.912 30.18 0.909 39.76 0.986 39.49 0.986 28.66 0.893
BRN [13] 31.32 0.924 30.27 0.919 38.16 0.982 38.86 0.985 28.31 0.896
RRANet (ours) 31.60 0.924 30.18 0.916 39.60 0.986 39.72 0.987 29.46 0.908

Table 2: Quantitative comparison on real-world SPA-
Data (Red: rank 1st; Blue: rank 2nd).
Methods| SPANet [17] |[RCDNet [16]| RRANet(ours)
Metrics |PSNR SSIM|PSNR SSIM [PSNR SSIM
Results | 40.04 0.984| 41.05 0.985 | 43.53 0.991

PReNet JORDER-E RCDNet ~  BRN  RRANet (ours)

Figure 3: Qualitative comparison on Rain100L
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Flgure 5: Qualitative comparison on real SPA-Data

by rain streaks in the input rainy image. From Fig. 3, we
can see that our RRANet can better recover the window
frames of the building that have similar appearance to the
rain streaks, showing the high capability of our RRANet
using the RLCN image.

3.3 Comparison on Real-world Dataset

Compared methods: We evaluate the generalization abil-
ity of our proposed RRANet for real-world images of SPA-
Data [17]. SPANet [17] and RCDNet [16] are included into
the comparison as they release their pretrained model on
full SPA-Data’s training set.

Results: Table 2 shows the PSNR and the SSIM re-
sults. We can see that our RRANet provides remarkably
better results for real-world rainy images, compared with
SPANet [17], which is designed and presented with SPA-
Data, and a very recent state-of-the-art RCDNet [16], show-
ing the strong real-world generalizaion capability of the
proposed RRANet. As shown in Fig. 5, our RRANet can re-
move the rain more completely compared to the other meth-
ods, with least rain streaks remained, which proves that our
RRANet is able to better deal with weak rain streaks and
unpredictably complex rain patterns that generally appear
in real-world scenarios.

4 Conclusion

In this paper, we have proposed a novel single image de-
raining network called RRANet that exploits an RLCN im-
age, which can be calculated from the input rainy image by
a simple computation, as an additional network input and
also a guide to generate an attention map for deriving the
attentive regions for training the network in an RNN frame-
work. Because of the high capability of the RLCN image to
suggest candidate rain regions, the derived attention map
effectively focuses on the important regions around rain
streaks. Experimental comparisons with existing methods
have demonstrated that our proposed RRANet outperforms
the existing state-of-the-art methods and produces higher-
quality rain-removed images under synthetic and especially
real-world scenarios.
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