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Abstract

We propose an occlusion-robust network for 3D
hand pose estimation from a single RGB image. Severe
occlusions degrade the estimation accuracy of not only
occluded keypoints but also visible keypoints. Since the
existing methods based on a deep neural network per-
form convolutions on all keypoints regardless of visibil-
ity, inaccurate features from occluded keypoints affect
the localization of visible keypoints. To suppress the
influence of occluded keypoints, our proposed deep neu-
ral network consists of three modules: a 2D heatmap
generator, parallel sub-joints network (PSJNet), and
an ensemble network (EN). First, the 2D position
of all keypoints in an input image is predicted as a
2D heatmap, similar to the existing methods. Then,
PSJNet, which consists of several graph convolutional
networks (GCN) in parallel, estimates multiple incom-
plete 3D poses in which some of the keypoints have
been removed. Each GCN performs convolutions on a
limited number of keypoints, therefore, features from
occluded keypoints do not spread to the whole pose.
Finally, EN merges the incomplete poses into a sin-
gle 3D pose by selecting accurate positions from them.
Experimental results on a public dataset RHD demon-
strate that the proposed method outperforms the exist-
ing methods in the case of both small and severe occlu-
sions.

1 Introduction

3D hand pose estimation from images has been an
important research topic for decades, as it can be
widely used for many applications such as action recog-
nition, sign language recognition, human-computer in-
teraction, and virtual/augmented reality. An open is-
sue is the occlusion handling in images. Hand motions
or hand-object interactions lead to occlusions on key-
points due to movements of the palm or fingers. Since it
is difficult to extract accurate features from occluded
keypoints, severe occlusions significantly degrade the
estimation accuracy.

A significant amount of reseach attention has been
devoted to occlusions [1, 2, 3, 4], and large progress has
been seen with recent advances in convolutional neu-
ral networks (CNN) [5, 6, 7, 8]. However, these works
with CNNs require a depth image or video frames as
the input, which are not always available in real appli-
cations. For example, a depth sensor can be used only
if a hand is sufficiently close to it. Moreover, methods
that require temporal information cannot be applied to
a single image.

To avoid these limitations, 3D hand pose estima-
tion from a single RGB image has been attracting in-
terenst [9, 10, 11]. While these works improve the es-
timation accuracy, they do not address the occlusion
issue.

If occlusions are not considerd, degradation of the
accuracy of the occluded keypoints is inevitable. The
existing methods aim to improve the estimation accu-
racy of occluded keypoints. However, we experimen-
tally found that severe occlusions also degrades the ac-
curacy of visible keypoints. More details are presented
in Sec. 3.2. We hypothesize that this is because the ex-
isting methods based on a deep neural network (DNN)
perform convolutions on all keypoints regardless of the
visibility. Let us consider an example where a graph
convolutional network (GCN) reconstructs a 3D hand
pose from a 2D pose estimated by a CNN. Figure 1(a)
illustrates how the 3D position of a visible keypoint
(denoted by a red circle) is determined by other visible
and occluded keypoints (shown in circles and trian-
gles, respectively). The existing networks extract fea-
tures from nodes at a distance of k via the neighboring
nodes by performing convolutions k times, the flows of
which are indicated by green arrows. Thus, inaccurate
features from occluded keypoints are used to localize
the 3D position of visible keypoints. As a result, the
estimation of visible keypoints is corrupted. There are
two approaches to overcoming this issue: (i) improving
the CNN for 2D pose estimation on occluded keypoints,
and (ii) suppressing the influence of occluded keypoints
when reconstructing a 3D pose from a 2D pose. The
existing methods discussed above try to solve the oc-
clusion issue by taking the first approach. In contrast,

17th International Conference on Machine Vision Applications (MVA)
Fully Online, July 25–27, 2021.

© 2021 MVA Organization

O2-2-4



1st conv  𝒌-th conv  

…

2D pose
(input)

3D pose
(output)

(a) Conventional method

subgraph 1

Ensemble
Network

visible
occludedsingle GCN

subgraph 𝑵

…

…

…… … …

3D pose
(output)

𝒌-th conv  1st conv  

2D pose
(input)

…

(b) Proposed method

Figure 1: Visual comparison of the proposed and con-
ventional methods. Blue and green arrows indicate fea-
ture extractions by the first and k-th convolutions on
neighboring nodes, respectively. (a) Since the conven-
tional method performs convolutions on all keypoints
regardless of visibility, inaccurate features from oc-
cluded keypoints affect the localization of visible key-
points, which collapses the final 3D pose. (b) N sub-
networks in the proposed method perform convolutions
on a limited number of keypoints, so features from oc-
cluded keypoints do not spread to the whole pose. EN
merges N incomplete 3D poses into a single 3D pose.

we examine the second approach in this paper.
To this end, we propose a unique DNN architecture

consisting of multiple GCNs in parallel followed by an-
other GCN to merge the outputs of all GCNs. Fig-
ure 1(b) shows the concept of the proposed method.
Each GCN performs convolutions on a limited num-
ber of keypoints (i.e., some of the keypoints have been
removed). The combination of removal differs in each
GCN. Each GCN predicts an incomplete 3D pose, and
then the final GCN merges the incomplete poses into
a single 3D pose by selecting accurate positions from
them. We demonstrate that the proposed method out-
performs the existing methods on RHD [12].

2 Proposed Method

The proposed network consists of three modules: a
2D heatmap generator, a parallel sub-joints network
(PSJNet), and an ensemble network (EN). First, from
an input image, the 2D heatmap generator predicts a
2D pose, the shape of which is J × 2, where J = 21 is
the number of keypoints. Then, each branch of PSJNet
estimates an incomplete 3D pose from the 2D pose
in which some of the keypoints have been removed.
Specifically, each GCN reconstructs 3D pose (J−m)×3
from two (J − m) × 2 vectors, one from a partial 2D
pose and the other from image features of the Fea-

Table 1: Architecture of the feature encoder. S1 or
S2: strides for a 3 × 3 convolution. J : the number of
keypoints. m: the number of removed keypoints. D:
the number of dimensions of a GCN, i.e. D = 2 in
PSJNet and D = 3 in EN. See Fig. 2 for J , m, and D.

Layer Dims (C×H×W)

Feature map 256× 64× 64
Conv3× 3(S2)–BN–ReLU 256× 32× 32
Conv3× 3(S1)–BN–ReLU 256× 32× 32
Conv3× 3(S1)–BN–ReLU D(J −m)× 32× 32
Global average pooling D(J −m)

ture Encoder (FE), where m is the number of removed
keypoints. In the experiment, the sets of removed key-
points are {TIP}, {DIP}, {PIP}, {MCP} in every fin-
ger, i.e. N = 4 and m = 5. Finally, EN receives N
incomplete 3D poses from PSJNet, an N(J −m) × 3
vector, and an image feature from FE, a (J −m) × 3
vector. EN merges the incomplete poses into a sin-
gle 3D pose J × 3 by selecting accurate positions from
them. Table 1 summarizes the network architecture of
FE.

The 3D hand pose reconstruction from a single 2D
pose is ill-posed due to the depth and scale ambiguity.
Therefore, similarly to Zimmermann et al. [12] and Cai
et al. [9], our network outputs a 3D pose of i-th keypoint
xi = (xi, yi, di) as follows:

di =
zi − zroot

s
, (1)

where zi and zroot denote the absolute depth of the i-th
point and the wrist, respectively, and s = ‖xk+1−xk‖2
is the length of a keybone. We choose k and k + 1 for
the first bone of the middle finger in this paper.

2.1 Loss Function

Our method has two types of loss function: 2D loss
and 3D loss. We calculate the mean square error (MSE)
for training the 2D heatmap generator as:

L2D =
∑
i∈J

∥∥∥hi − ĥi

∥∥∥
2
, (2)

where hi and ĥi represent the predicted heatmap of
the i-th keypoint and the corresponding ground-truth,
respectively. The 3D loss L3D for training the GCNs
and the FEs is defined by

L3D = α
∑
i∈J

smoothL1(pi, p̂i) + β
∑
i∈J

smoothL1(di, d̂i).

(3)
The variables with a hat, p̂i = (x̂i, ŷi) and d̂i, represent
the ground-truth of the i-th keypoint, and pi = (xi, yi)
and di represent predictions. The coefficients α and β
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Figure 2: Overview of proposed network. First, the 2D heatmap generator predicts the 2D position of all keypoints
in an input image. Then, PSJNet, which is composed of N GCNs in parallel, estimates multiple incomplete 3D
poses in which part of keypoints have been removed. FEs extract image features from an intermediate feature map
in the 2D heatmap generator. Finally, EN merges the incomplete N poses into a single 3D pose.

are weight factors to balance the value range of the two
losses. We set α = 0.01 and β = 1 in the experiment.
Similar to [9], we used the smooth L1 loss.The total
3D loss function Ltotal

3D is defined by the sum of the 3D

loss (Eq. (3)) for each GCN of PSJNet LPSJ,k
3D and EN

LEN
3D , i.e.

Ltotal
3D = LEN

3D +
1

N

∑
k∈N

LPSJ,k
3D . (4)

2.2 Training

For stable convergence, we train the proposed net-
work by the following four steps:

1. Train the 2D heatmap generator by minimizing
L2D.

2. Train PSJNet and the connected FEs by minimiz-

ing
∑
LPSJ,k
3D .

3. Train EN and its FE by minimizing LEN
3D .

4. Finetune PSJNet and EN by minimizing Ltotal
3D .

After the first step, the 2D heatmap generator is frozen.
PSJNet and the FEs are also frozen at the third step.

3 Experiments

The proposed method aims to reduce the accuracy
degradation of visible keypoints caused by severe occlu-
sions. In this experiment, we define a severe occlusion
as the situation where more than half of the 21 key-
points, i.e. > 10 keypoints, are occluded. We evaluated
the performance of the proposed and existing methods

on images under small occlusions and severe occlusions
in RHD [12].

3.1 Settings

We compared the following three methods in this
experiment.
Cai et al. [9]

CNN-based method with RGB+D images.
Trained full-supervised setting.

HopeNet [11]
GCN-based method with RGB images. We re-
placed the 2D keypoint predictor with HRNet-
W32 [13], and customized it to output only 21
keypoints for fair comparisons.

Proposed
GCN-based method with RGB images. We used
HRNet-W32 for the 2D heatmap generator, and
Adaptive Graph U-Net [11] for GCNs.

We measured the percentage of correct keypoints
(PCK) and its area under the curve (AUC) for evalu-
ating the pose estimation accuracy. To calculate PCK
in the camera coordinate systems, we assume that the
global scale of the keybone, the root depth, and the
intrinsic camera parameters are known in the experi-
ments. This is the same assumption as the previous
work by [9, 12].

3.2 Results

Figure 3(a) and (b) show the PCK curves on RHD,
which are the performance on visible keypoints under



Table 2: AUC under each condition and the relative values between small and severe occlusions. All: all visible
keypoints regardless of occlusions. Small occ.: more than 10 visible keypoints under small occlusions. Severe occ.:
less than 11 visible keypoints under severe occlusions. Rel. value: the relative performance of AUC for severe
occlusions with respect to AUC for small occlusions.

Method All Small occ. (A) Severe occ. (B) Rel. value (= B/A)

Cai et al. 0.4055 0.4061 0.3006 0.7402
HopeNet 0.4606 0.4624 0.3869 0.8366
Proposed 0.4889 0.4901 0.4394 0.8965
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Figure 3: PCK curves on visible keypoints under small
and severe occlusions. Severe occlusions degrades the
performance of all methods. The proposed method out-
performs the existing methods by around 0.1 points at
the 30 mm threshold.

small and severe occlusions, respectively. As we can
see in the figure, severe occlusions degrades the per-
formance of all methods. The PCK curves also clearly

indicate that the proposed method outperforms the ex-
isting methods for both occlusion scenarios. The AUC
results are summarized in Table 2, where AUC for all
visible keypoints are additionally shown. We also cal-
culated the relative performance (shown in the last
column) between AUC for small and severe occlusions
to check the degradation caused by severe occlusions.
A relative value approaching 1 indicates stable perfor-
mance regardless of the amount of occlusions, while a
relative value approaching 0 indicates a degraded per-
formance due to the effect of occlusions. Our com-
parison of the relative values shows that the proposed
method is more robust to the amount of occlusions than
the existing methods.

4 Conclusion

In this paper, we have proposed an occlusion-robust
network for 3D hand pose estimation from a single
RGB image. Working from a hypothesis that convo-
lutions on all keypoints cause inaccurate feature prop-
agation from occluded keypoints, we configured mul-
tiple GCNs to predict incomplete 3D hand poses in
which some of the keypoints have been removed. The
incomplete poses are merged into a single pose by an
ensemble network. Our hypothesis was validated by
experiments on RHD, where the proposed method sig-
nificantly improved the estimation accuracy and was
more robust to occlusions than the existing methods.
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