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Abstract

This paper addresses the problem of content filtering in
live streaming video. We consider the case where positive
data, content to be filtered, is not readily available on the
target platform. We therefore use positive data from other
sources and apply domain adaptation to classify new data on
the target platform. In order to map features of source and
target domains into a common feature space, we optimize
a Wasserstein distance (WD) loss and binary cross entropy
loss, such that class distributions remain separated in the
new feature space. Our baseline model achieves state-of-
the-art results on the public NPDI dataset, and we show that
WD-based domain adaptation improves the accuracy in the
absence of positive samples in the target domain.

1 Introduction

Video streaming services employ content moderation to
provide a family-friendly environment to customers. In this
paper, we consider the task of adult content filtering. This
task includes classifying video content based on appearance
and scene context [1]. One major challenge is the collection
of a representative dataset. This has been approached by
collecting data from multiple domains, i.e., selecting pos-
itive data from various media platforms and negative data
from different sources [2, 3, 4, 5]. This strategy allows for
collecting large datasets, but leads to a mismatch of training
and test distributions owing to differences in scene environ-
ments and camera views [6, 7]. Prior work in cross-dataset
settings assumes that the data has a similar distribution dur-
ing training and testing [3, 8]. However, this assumption
does not always hold in real situations, especially when no
positive samples in the target domain are available.

In this paper, we formulate the task of adult content fil-
tering in video as a domain adaptation problem. We use
positive data from other sources with different distributions
to that of the target platform. To reduce domain discrep-
ancy between source and target, we apply domain adapta-
tion based on Wasserstein distance minimization [9]. This
allows us to learn a domain-invariant feature representation
between all source data and negative-only target data distri-
butions, see Figure 1. In order to filter content, we sample
frames from the video stream and classifiying them using
a CNN (ResNet-101). In order to create a strong baseline
model, we include task-specific data augmentation as well
as an attention mechanism. To validate the design choices,
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Figure 1: Domain adaptation. Wasserstein domain adap-
tation maps source and target features (zs and zt, respec-
tively) into a common space with reduced between-domain
discrepancy and preserved between-class discrimination.

we carry out experiments on the public NPDI dataset [2] as
well as data from a video streaming service. We evaluate
the method in three settings: within-domain, cross-domain,
and adapted-domain. To the best of our knowledge, this
is the first work to apply feature distribution-based domain
adaptation to the task of adult content detection.

2 Prior work

Adult Scene Detection. A common approach to adult
content detection is skin color detection in video frames [10,
11, 12, 13]. Additional cues such as shape and appear-
ance have been used for increased robustness [14, 4, 15,
16]. More recently, deep learning-based approaches im-
proved classification performance over hand-crafted fea-
tures [17]. To focus on specific local image regions,
Zhang et al. [18] proposed visual attention for a bags-of-
visual-words (BoVW) model, which achieved better per-
formance than a model without attention [19]. Wang et
al. [20] adopted an attention-gated mechanism combined
with a deep network, and showed that this mechanism helps
improve performance. To focus on local image regions,
Jin et al. [3] modeled an input image as a bag of regions and
applied weighted multiple instance learning. Several works
proposed deep learning architectures where local and global
context are jointly taken into consideration [21, 22]. To de-
tect the concept of provocative intent, Ganguly et al. [23]
proposed a hierarchical model that includes multiple fac-
tors, such as exposed skin area, body pose, gestures, facial
expressions and scene context.
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Figure 2: Proposed System. We apply domain adaptation
in the feature space by optimizing a cross entropy loss to
preserve discrimination and a Wasserstein distance loss to
reduce the distribution shift between source and target do-
mains.

Domain Adaptation. Domain shift is a well-known
problem in visual recognition tasks when there is a distribu-
tion change between training and test data, namely, source
and target domain [6, 7]. In the adult scene detection task,
domain shift is caused by large differences in camera views
and lighting conditions. In order to maintain detection per-
formance, domain adaptation is an effective approach to
minimize the distribution mismatch between two domains.
Various domain adaptation approaches have been developed
for visual recognition tasks. The review by Patel et al. [6]
categorizes these into the following categories: feature aug-
mentation, feature transformation, model parameter adapta-
tion, dictionary learning, domain re-sampling, and multiple
intermediate representations. Wang et al. [7] reviews ap-
proaches for visual domain adaptation developed for deep
neural networks.

3 Method

Our method is composed of feature extraction and do-
main adaptation stages, see Figure 2. We assume that source
images include both positive and negative data, whereas
target images consist of negative data only. In conjunc-
tion with encoding extracted features in a common feature
space, we reduce domain shift and preserve discrimination
between positive and negative classes.

3.1 Feature extraction

We extract features using a ResNet-101 [24] and add
three modules to improve feature extraction: data augmen-
tation, an attention mechanism, and false positive filtering.
For data augmentation we use RandAugment [25] for reg-
ularization during training. Additionaly, we synthesize im-
ages that are closer to target distribution. Specifically, we

segment humans from images using DeepLabV3 [26] and
superimpose them on natural or artificial backgrounds in
representative sizes. To include an attention mechanism,
we adopt the Attention Branch Network (ABN) architec-
ture [27]. ABN optimizes an image-level attention map,
which is combined with image feature maps to generate
probability scores. Even though our method is not explicitly
based on skin detection, skin areas are inherently learned as
useful features for adult scene detection and can result in
false positives, especially during close-up scenes of faces.
We additionally run a face-detector to reduce the number of
false positives.

3.2 Domain Adaptation

To reduce the distribution mismatch between source
and target feature distributions we apply domain adapta-
tion [28]. More specifically, given a feature vector zs in
the source domain S and zt in the target domain T , the goal
is to learn a transformation W : S → T . This task can be
approached as an optimal transport problem, where we seek
to minimize the cost to move points from one distribution to
another, measured by the Wasserstein distance, also known
as Earth Mover’s distance. Shen et al. [9] proposed a rep-
resentation learning method guided by the Wasserstein dis-
tance to reduce domain discrepancy. Compared to prior do-
main adaptation methods [29, 30, 31], Wasserstein distance-
based representation learning [9] has been shown to have
high discriminative power and a more stable gradient when
minimizing domain discrepancy [32]. The main difference
to [9] is that we use the deep network described in Section
3.1 as initial feature extraction module and pass the features
into an encoder layer, in which the domain-invariant feature
space parameters are learned.

We detail our adaptation approach in the following.
Given feature vectors z+s and z−s ∈ Rd from positive and
negative classes, respectively, in the source domain, and
features from the negative class in the target domain, z−t
∈ Rd, we apply these steps:

1. We pass feature vectors z ∈ Rd into another fully con-
nected (FC) layer as a learnable mapping function G
to output ẑ ∈ Rm where m < d. We call this layer
feature encoder with parameter ϑG.

2. The encoded feature vectors ẑ−s , ẑ+s , and ẑ−t are pro-
cessed in two separate FC layers: a domain critic layer
and a discriminator layer. The domain critic layer
learns a function F to transform the encoded feature
representation ẑ ∈ Rm to a real number z ∈ R.
More specifically, the domain critic layer estimates the
Wasserstein distance in order to reduce source and tar-
get domain discrepancy in the encoded feature space.
Assuming we only have the negative data distribution
in the target domain, the domain critic loss Lw be-
tween the representation of source and target distribu-
tion is calculated as:

Lw =
1

ns

∑
zs∈S

F (ẑs)−
1

n−t

∑
z−
t ∈T

F
(
ẑ−t
)
, (1)



where ns is the number of samples in the source do-
main, and n−t the number of negative samples in the
target domain. The discriminator layer C maps Rm to
Rc, where c is the number of classes, here c = 2. The
discriminator layer preserves the discrimination capa-
bility of the encoded features with the binary cross-
entropy loss Lc:

Lc = − 1

ns

ns∑
i=1

1∑
j=0

1 (ysi = j) log
(
C (ẑs)j

)
, (2)

where ysi is a binary label for the i-th source sample
and 1 is the indicator function.

3. To train a domain invariant embedding, we optimize
the following total loss function in an adversarial man-
ner:

min
ϑG,ϑc

(
Lc + αmax

ϑw

(Lw − βLgrad)

)
, (3)

where α is a balancing coefficient between the dis-
crimination and domain invariance losses, and β is
a coefficient to control the contribution of Lgrad =
(||∇ẑG||2− 1)2, a gradient penalty to enforce the Lip-
schitz constraint [32, 33]. Additional feature represen-
tations ẑ are sampled at random points between source
and target domains to calculate Lgrad. We optimize
ϑG, ϑc, and ϑw via standard back-propagation. The
between-domain discrepancy of the feature representa-
tions is iteratively reduced by minimizing the Wasser-
stein distance.

4. Test data zt in the target domain is classified by map-
ping it into the domain-invariant feature space ẑt =
G(zt) followed by applying a softmax classifier to the
output of the discriminator C(ẑt).

4 Experiments

To validate the proposed method, we conducted the fol-
lowing three experiments. First, to confirm that the ex-
tracted features are suitable for the task of adult scene de-
tection, we evaluate them on a standard within-domain clas-
sification task, i.e., using the same dataset as the source and
target domains. Next, for cross-domain evaluation, we train
the model on the source distribution and evaluate its perfor-
mance on different target distribution, comparing it with a
number of other publicly available methods for adult con-
tent detection. Finally, we evaluate the proposed domain
adaptation method, comparing it with two other adaptation
methods on the same task.

4.1 Datasets

Live-streaming dataset (Live). To prepare a
dataset containing representative image data, we crawled
214 archived videos from a live-streaming service, mainly

Table 1: Within-domain evaluation on the combined Web
and Live dataset. R: ResNet-101, GA: augmentation by
generated images, RA: RandAugment, Att: ABN attention
mechanism.

Acc P@99% R F1 mAP

R 98.86 87.72 97.16 86.58

R+GA 98.89 86.65 97.23 88.85

R+GA+RA 98.89 93.22 97.27 87.60

R+GA+RA+Att 99.02 92.99 98.65 95.76

containing footage of one person talking, singing or danc-
ing, wearing casual clothes. It also contains many face
close-ups as well as images without any people. We ex-
tracted 120,000 images by randomly sampling 1% of the
frames. All images in this dataset belongs to the negative
class.

Web-crawled dataset (Web). To construct a dataset
containing both positive and negative classes, we crawled
230,000 images from the web. These images include scenes
of people wearing diverse set of clothing as well as close-
up face images and images with no humans, as in the Live
dataset. Images of people wearing no top or no clothes are
labeled as positive, all other images are labeled as negative.

NPDI Dataset. The public NPDI dataset has been
widely used as a benchmark for adult content detection [2].
It contains 16,727 images, selected from 800 hours of video
data. We only consider ‘porn’ and ‘non-porn (easy)’ cate-
gories of this dataset as these directly translate to our def-
inition of positive and negative classes, respectively. Fol-
lowing Wang et al. [7], we confirm that 895 of 6,387 posi-
tive images are incorrectly labeled and exclude these in the
experiments. In total, we use 5,692 positive and 6,784 neg-
ative images from the NPDI dataset. We follow the 5-fold
cross validation protocol for the evaluation.

4.2 Results

To measure the performance, we used four metrics:
binary accuracy (Acc), precision@99%recall (P@99%R),
F1-score (F1), and mean Average Precision (mAP).

4.2.1 Within-domain evaluation

In this experiment we combine the Live and Web
datasets and split the merged dataset randomly into train-
ing and test sets with a 80:20 ratio. Table 1 shows the re-
sults from this within-domain evaluation, confirming that
our model performs well across several metrics. We use
data augmentation with images generated by overlaying
segmented human foreground images onto background im-
ages (GA) as well as RandAugment [25] (RA). We observe
an improvement for three of the metrics by introducing the



Table 2: Cross-domain evaluation on NPDI. Comparison of
Nude.js [34, 35], PornDetector [36], and NudeNet [37, 38]
with our approach. The training datasets do not contain
any NPDI images.

Acc P@99% R F1 mAP

Nude.js [34, 35] 60.29 34.49 59.55 41.84

PornDetector [36] 78.53 34.25 77.51 39.80

NudeNet [37, 38] 83.50 34.57 81.42 29.11

Ours (R+M+RA+At) 89.14 34.67 87.51 46.30

Table 3: Domain adaptation results on NPDI (Target)
based on model trained on other (Source) dataset. 4:
Trained only on Web+Live dataset. �: Trained on
Web+Live+(NPDI negative) dataset.

Acc P@99% R F1 mAP

Ours (w/o adaptation)4 89.14 34.67 87.51 46.30

Ours (w/o adaptation)� 93.10 34.58 92.36 30.89

Euclidean-based adaptation 93.23 34.58 92.50 20.14

GMM-based adaptation 93.19 35.37 92.14 78.45

WD-based adaptation 93.70 56.01 92.97 96.92

ABN attention mechanism (Att). We use this model trained
with data augmentation and attention as baseline model in
the following experiments.

4.2.2 Cross-domain evaluation

To evaluate generalization to a different dataset, we use
the model trained on our Live + Web dataset and evalu-
ate it on NPDI. We split the NPDI dataset based on the
standard fold data list. Table 2 shows the results for this
cross-domain experiment. We compare the performance of
our method with publicly available adult content detectors:
Nude.js [34, 35], a method based on skin detection, and
PornDetector [36] and NudeNet [37, 38], which are based
on deep learning. The proposed method consistently shows
better results on NPDI across all metrics.

4.2.3 Domain adaptation

For this experiment we consider images from the merged
Web and Live dataset as coming from the source domain.
The negative class of the NPDI dataset forms the negative
target distribution, ignoring the positive NPDI samples in
this experiment.

The first row in Table 3 shows the results of our base-
line model. The accuracy increases by including the neg-
ative data of NPDI (row 2). Starting with this model, we
compare alternative domain adaptation methods based on
distribution shift. For this, we translate the target features
by the difference vector measured from the target negative

Figure 3: Precision-recall curve for domain adaptation
comparison on the NPDI evaluation set (target domain).
The Wasserstein distance-based adaptation approach signif-
icantly outperforms the GMM-based approach.

cluster mean to the one in the source domain. We then
classify the features by either minimum Euclidean distance
(Euclidean-based adaptation) or maximum log-likelihood
using the trained Gaussian Mixture Model (GMM) with 4
mixture components (GMM-based adaptation) [39].

For our Wasserstein distance (WD) based method we
empirically set hyper-parameters in (3) to α = 0.1 and
β = 10.0. The number of nodes in the feature encoder’s
input, hidden, and output layers are 2048, 1000, and 500,
respectively. The number of nodes in the domain critic’s
input, hidden, and output layers are 500, 100, and 1, respec-
tively. The discriminator input and output FC layers contain
500 and 2 nodes, respectively. An Adam optimizer is used
with learning rates of 10−3 for the domain critic and 10−4

for the discriminator, respectively.
Table 3 and the precision-recall curve in Figure 3 show

the effectiveness of applying domain adaptation to our adult
content filtering model. Wasserstein domain adaptation
shows the best performance across all metrics, maintaining
discriminative power between classes in the target domain.
The high precision at high recall values is especially impor-
tant for our application.

5 Conclusion

In this paper we proposed domain adaptation based
on Wasserstein distance minimization to improve cross-
domain recognition performance of adult content detection.
We designed our content filtering model using task-specific
image data augmentation, an attention mechanism, and
false-positive filtering. Through experiments, we confirmed
that domain adaptation effectively mitigates the domain-
shift problem between source and target and improves con-
tent filtering performance in a cross-dataset setting even
without positive training samples from the target domain.
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