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Abstract

Existing studies on human-object interaction (HOI)
assume that human and object instances can be de-
tected. This paper proposes a more practical HOI de-
tection method for when object instances are not nec-
essarily easily detectable. To our knowledge, we intro-
duce the first method for such challenging HOI detec-
tion that incorporates global scene information. The
two most widely used public HOI benchmark datasets
are shown to contain many cases of HOI with missing
objects (HOI-MO). We label these to compose new test
sets for the proposed method. The effectiveness and
superiority of the proposed method are demonstrated
through extensive experiments and comparisons.

1 Introduction

Human-object interaction (HOI) is an important
task which finds applications in a wide range of fields
including human-robot collaboration and smart envi-
ronments. Past methods mainly follow the conven-
tional process of first detecting human and object in-
stances and then recognizing their interactions. As a
result, HOI activities can only be detected for cases
where human and object instances are accurately de-
tected. HOI activities that do not necessarily have
clear views of the target objects, which we refer to
HOI with missing objects (HOI-MO) cases, are com-
mon in the real world. We found that even in widely
adopted public HOI detection datasets (V-COCO and
HICO-DET) which are carefully constructed to avoid
HOI-MO cases, there still is a large amount of HOI-
MO instances (more than 10%). Humans can easily
interpret these HOI-MO cases and it is of paramount
importance to make computers detect them accurately.

Why can then humans easily recognize human-
object interactions even when the people or objects are
not discernible in the image? This is likely because our
perception leverages global scene context in the image.
That is, we can extrapolate the constituents of the in-
teraction from the overall scene context and correctly
infer their relation.

In this paper, we propose a novel HOI detection
method that realizes this ability. To our knowledge,
our method is the first solution for human-object inter-
action with missing objects (HOI-MO) detection. Fig-
ure 1 shows two concrete examples of HOI-MO detec-
tion. The key idea is to fully leverage background scene
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Figure 1. Existing HOI detection solutions can
fail when the target objects cannot be detected.
Our method leverages global scene context to re-
liably recognize such instances of human-object
interaction with missing objects (HOI-MO).

information. The method builds upon a panoptic seg-
mentation backbone whose middle-level representation
for human and object instances and background stuff
are leveraged to detect HOI with challenging (e.g., oc-
cluded) and missing objects. Experimental results on
two new HOI-MO test sets validate its effectiveness.
Each test set includes six HOI-MO categories as shown
in Figure 3: (a) occlusion, (b) truncation, (c) rare type,
(d) small scale, (e) transparency, and (f) gray image.
We believe that our work can largely expand HOI’s
applications in real-world scenarios.

2 Related Work

Context Modeling in HOI Detection. Contex-
tual information plays a crucial role in improving the
performance of many computer vision tasks such as
object detection [13, 2], segmentation [4], and HOI de-
tection. Conventional methods for HOI analysis use
context in their models but implicitly [16, 18]. In con-
trast, we leverage panoptic segmentation to explicitly
integrated per-pixel scene context.

Visual Cues for HOI Detection. In HOI detec-
tion, primary visual cues come from object and human
detection results. Recent works have also explored the
use of human pose [11, 15]. Our key idea is to leverage
panoptic segmentation, for the first time for HOI de-
tection, so that both stuff segmentation and instance
segmentation can be integrated into context modeling
and self-attention based instance representation.

Vision in the Wild. Recently, various studies have
looked into more challenging (wilder) data for tradi-
tional vision tasks including face recognition [14], pose
estimation [7], and object detection [3]. Some others
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Figure 2. The overall architecture of the proposed HOI-MO-Net.

(a)occlusion

(d)small scale (f)gray image(e)transparency

(c)rare type(b)truncation 
(object is missing)

Figure 3. Six HOI-MO categories chosen in a
data-driven manner are shown. The red bounding
boxes indicate ground-truth human instances and
the yellow bounding boxes depict object instances
typically missed by object detectors, respectively.

even consider multiple tasks with the same wild data
[19]. Existing data for evaluating HOI detection mod-
els still do not truly reflect instances in the wild. In this
paper, we investigate this issue by proposing new HOI-
MO test sets in addition to introducing a novel method
for HOI detection that can handle HOI instances with
target objects missed by object detectors.

3 Method

Panoptic Backbone. The novel HOI detection
network is named HOI-MO-Net whose overall archi-
tecture is illustrated in Figure 2. The proposed HOI-
MO-Net is based on a panoptic segmentation back-
bone. The backbone provides both semantic segmenta-
tion results for stuff regions and instance segmentation
results for human and object instances. We choose
the backbone from a simple yet effective panoptic seg-

mentation model [9] pre-trained on MS COCO dataset
[12], which shares the same original data source with
V-COCO [6] and HICO-DET [1], the two most com-
monly used standard benchmarks for HOI detection.

HOI-MO-Net has the following four novel compo-
nents that collectively achieve accurate HOI-MO de-
tection.

HOI-MO Data Augmentation. Due to the diffi-
culties of annotating HOI-MO activities which greatly
limit the amount of labeled training data, we design
an HOI-MO data augmentation strategy to generate
pseudo HOI-MO samples. Since the key difference
between normal data and HOI-MO data is whether
the object instances are easily detectable or not, our
strategy is to use the ground-truth bounding box of
each object instance to mask out the object with con-
stant white color, change the ground-truth segmenta-
tion maps, and assign null values to the corresponding
bounding boxes of masked object instances. Although
such HOI-MO data augmentation is only a crude ap-
proximation of real cases where objects are missing or
undetected and does not directly correspond to the six
HOI-MO types we are particularly interested in mod-
eling (see Figure 3), the model can still learn how to
explore other information for HOI detection in the ab-
sence of object instances in the image.

Semantic Self-attention. Unlike existing self-
attention based models (e.g., iCAN [5]), our semantic
self-attention uses instance segmentation masks rather
than instance bounding boxes for pooling the query in-
stance features. Figure 4 shows a schematic of this self-
attention module, where the “masked features” denote
the instance features within its spatial segmentation
mask rather than the bounding boxes. Such a seman-
tic self-attention module can help exclude background
noises and extract finer self-attention based contextual
representation. The dotted line in Figure 2 heading
to “Object Semantic Self-attention” corresponds to a
special operation of filling a region with zeros when



Global
Average
Pooling

conv

conv
softmax

1×512 1×256

1×256

1×256×14×14

Panoptic Backbone

⊗

⊗

Global
Average
Pooling

linear

linear

1×h×w×512
conv features

1×512

⊗is multiplication
1×512

masked features

⊗Mm or multi

Figure 4. Semantic Self-attention module. Conv
is a convolution layer. Linear applies a linear
transformation to the input data.

object detection fails. A convolution layer and a fully
connected layer are used to construct the semantic self-
attention modules. A linear transformation is adopted
to concatenate and fuse human and object features.

Stuff Context. Scene context, especially regarding
stuff (i.e., none-object regions), can be an informative
cue for determining the human-object interaction in
the image (see Figure 2 for an example). We use the
semantic segmentation head described in [9] for mod-
eling the stuff context. It takes the Feature Pyramid
Network (FPN) features as input and merges informa-
tion from all levels of the FPN into a single output. We
extract stuff features with a simple CNN-based network
branch for all the 54 MS COCO stuff categories.

Precise Spatial Configuration based on In-
stance Masks. The Spatial configuration of human
and object instances has been proven to be useful for
enhancing HOI detection in many existing works (e.g.,
iCAN [5]). However, these works have only used the
bounding boxes of the instances for extracting such in-
formation. HOI-MO-Net uses instance segmentation
results from the panoptic backbone, which can lead to
much higher precision.

4 Experimental Results

4.1 Datasets and Experimental Settings

Original Datasets. V-COCO [6] is a subset of
the MS COCO dataset [12] with HOI annotations. V-
COCO consists of a total of 10,346 images, of which
5,400 images are for training and validation, and the
remaining 4,946 are for testing. Each person is anno-
tated with 26 different actions. Each person can per-
form multiple actions at the same time, for example,
jumping while snowing or surfing. HICO-DET [1] is
the other dataset larger than V-COCO. It contains 600
HOI categories and over 80 object categories [12], with
a total of 38,118 images for training and 9,658 images
for testing.

HOI-MO Test Sets. Our HOI-MO test sets and
V-COCO/HICO-DET share the same input images.
We, however, add HOI instances with missing objects
whenever applicable. For instance, for the middle im-
ages on the top row of Figure 3, the original annotation

of HICO-DET consists of the racket as the object, the
player as the person, and “tennis racket swing” as the
HOI category. We add “sports ball hit” as the HOI
category even though the ball is missing as the object.
As a result, HOI-MO represents particularly hard cases
as an additional test set.

The two HOI-MO test sets are named V-COCO-MO
and HICO-DET-MO, which covers 22 V-COCO cate-
gories and 155 HICO-DET categories, respectively. In
addition to these test sets, we also evaluate our method
on mixed test sets that combine the original and the
new HOI-MO test sets (named Mixed-V-COCO and
Mixed-HICO-DET).

Evaluation metrics. We adopt the commonly
used role mean average precision (role mAP) [10] for
evaluation. If the predicted bounding boxes for human
and objects both have IoUs ≥ 0.5 compared with the
ground truth and the human-object interaction predic-
tion score per action is also correct, then the prediction
is considered as a true positive.

Implementation details. We use the panoptic
backbone from Detectron2 [17] to generate human and
object bounding boxes. We keep human and object
instances whose box scores are higher than 0.5. We
train our network for 30 epochs on each dataset with
a learning rate of 0.001 and batch size 4. Training our
network on V-COCO takes 12 hours on one Quadro
RTX 8000 48G card. For HICO-DET, training the
network on the train set takes 52 hours with the same
GPU.

4.2 Results on HOI-MO Test Sets

For HICO-DET, we follow the settings in [1]: Full
(600 HOIs), Rare (138 HOIs), Non-Rare (462 HOIs)
in Default. For V-COCO, we evaluate the commonly
used 24 actions. Our experiment results on mixed test
sets are generally better than conventional methods.
Table 1 shows that iCAN’s results are better than TIN-
net [11] and VCL [8] on HICO-DET-MO’s Full and
Non-Rare settings. This is because HICO-DET has
600 verbs. TIN-net and VCL are larger in model size
and they are also more complex than iCAN, so they
are easier to overfit on small data like HOI-MO test
sets. Since V-COCO only has 24 verbs, performing
HOI detection on it is simpler compared with HICO-
DET. We used iCAN’s code from its Github website.
We deployed TIN-net and VCL’s pre-trained models
from its Github websites for evaluation.

4.3 Performance on Each HOI-MO Category

We present the per-category performance in Table
2. Our experimental results on HOI-MO categories are
generally better than conventional methods. Conven-
tional methods don’t use the HOI-MO data augmenta-
tion strategy, moreover, transparency (e) and gray im-
age (f) only have few samples, so their results are close
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Figure 5. Examples HOI detection results of our HOI-MO-Net and VCL. For each example, the first row shows
the original image with red bounding boxes denoting the human detection result. The second row shows the
panoptic segmentation results overlaid on the original image. Green results are either the ground-truths or
our predictions. VCL’s results are shown in red. We can see that our model’s results are more accurate.
Input images are from V-COCO-MO and HICO-DET-MO test sets, showing the six HOI-MO categories from
left to right. We also show failure cases of our model on the right-most side, for which the ground-truths are
shown in green and all prediction results are shown in red.

Table 1. Results on Mixed-V-COCO/HICO-DET and V-COCO/HICO-DET-MO test sets in mAP.

Method Mixed- Mixed-HICO-DET V-COCO- HICO-DET-MO
V-COCO Full Rare Non-Rare MO Full Rare Non-Rare

iCAN [5] 38.06 13.93 10.35 15.11 5.37 5.42 4.30 5.67
TIN-net [11] 40.88 16.04 13.36 17.02 5.60 4.97 4.31 5.12

VCL [8] 41.07 18.00 16.36 18.75 8.45 4.70 4.55 4.74
HOI-MO-Net 48.76 19.83 16.39 20.93 31.23 13.21 12.45 13.38

Table 2. Performance on V-COCO-MO by in-
dividual HOI-MO categories(HC) in mAP, with
‘(a)’–‘(f)’ denoting the HOI-MO categories shown
in Figure 3. ‘NS’ denotes the number of samples.
‘Ours’ denotes HOI-MO-Net.

HC NS iCAN [5] TIN-net [11] VCL [8] Ours
(a) 1360 5.99 6.35 8.54 33.37
(b) 198 0.72 0.85 1.06 60.37
(c) 258 8.46 9.77 15.9 46.40
(d) 514 1.87 1.66 3.67 31.67
(e) 16 0.00 0.00 0.00 50.00
(f) 30 0.00 0.00 0.00 36.38

to zero. HOI-MO-Net seems to be especially good at
“truncation,” because in most truncation images the
human body shape is clear, and the network can still
judge the HOI activities. Compared with “truncation,”
performance on “occlusion” is lower because in most
occlusion cases, not only the objects but also some hu-
man bodies are occluded. The performance on “small
scale” is also low because in most cases human body
shapes are ambiguous. “Transparency” and “gray im-
ages” are rare cases, but can still be detected by our
proposed method.

4.4 Qualitative Results

Figure 5 shows qualitative results, comparing the
proposed HOI-MO-Net with the VCL model. The im-
ages show the variance in object size, human size, and
different interaction classes.

5 Conclusion and Future Work

In this work, we introduced HOI detection with
missing objects, the task of HOI detection for chal-
lenging images in which objects are hard to detect, and
derived a novel HOI method that leverages scene con-
text. We built two test sets by using commonly used
public benchmark datasets for HOI detection. Exten-
sive experimental results demonstrate the effectiveness
of our method. Possible straightforward future work
is to explore a way for jointly optimizing the panop-
tic backbone and the HOI-MO-Net, so that these two
may better cooperate and generate interpretable new
middle-level representations.
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