
Distant Bird Detection for Safe Drone Flight and Its Dataset

Sanae Fujii Kazutoshi Akita1 Norimichi Ukita2

Toyota Technological Institute, Japan
{sd215011, ukita2}@toyota-ti.ac.jp

Abstract

For the safe flight of drones, they must avoid the
attacks of aggressive birds. These birds move very fast
and must be detected far enough away. In recent years,
deep learning has made it possible to detect small dis-
tant objects in RGB camera images. Since these meth-
ods are learning-based, they require a large amount
of training images, but there are no publicly-available
datasets for bird detection taken from drones. In this
work, we propose a new dataset captured by a drone
camera. Our dataset consists of 34,467 bird instances
in 21,837 images that were captured in various loca-
tions and conditions. Our experimental results show
that, even with the SOTA detection model, our dataset
is sufficiently challenging. We also demonstrated that
(1) several standard techniques for improving detection
methods (e.g., data augmentation) are inappropriate
for our challenging dataset, and (2) carefully-selected
techniques can improve the detection performance.

1 Introduction

With the increased expectations to use drones in
various fields such as delivery and agriculture, obsta-
cle detection for drone-flight safety has been developed
and put into practical use. For example, the Mavic 2
Pro [1] drone uses optical sensors that accurately de-
tect objects at most 20 meters distance all around the
drone. This sensor enables the drone to avoid collisions
with most static obstacles, such as walls and trees.

Although such high-performance sensors, it is re-
ported that aggressive birds, such as hawks, crash
drones in flight [2, 3, 4]. Since these birds can fly at
high speeds of 50 meters/second or more, a drone can-
not avoid their attacks even if the drone can detect
birds 20 meters away. Therefore, it is necessary to de-
tect such birds distant enough to avoid their attacks.

To detect distant objects, sensors such as Li-
DAR [19] or millimeter-wave radar [20] are standard
options. However, these sensors can only point or line
scanning. It is difficult for these sensors to distinguish
observed birds between aggressive ones and safe ones.
Furthermore, these sensors are heavy and expensive.
Thus these sensors are not suitable for drones. An
RGB camera is another option. In recent years, many
object detection methods allow us to find small dis-
tant objects even in RGB images. Since these methods
are based on deep neural networks, they need a large

annotated dataset for training. However, there is no
publicly-available dataset for this purpose.

In this work, we propose a new dataset captured
by a camera onboard a drone. Our dataset contains
34,467 manually annotated bird instances in 21,837 im-
ages with various backgrounds such as sky, forest, rice
field, buildings, and so on. These bird instances were
captured as close as 10 meters, while others at distances
of 200 meters or more.

2 Related Work

2.1 Bird Dataset

Many of the publicly-available bird datasets (e.g.,
the Caltech-UCSD Birds 200 dataset [21], the 260 bird
species dataset [22], and the NABirds dataset [23, 24])
are intended to identify bird species. Many of these
datasets show large images of birds, which are not suit-
able for the purpose of detecting birds in the distance.
On the other hand, Yoshihashi et al. [5] developed a
dataset for detecting small distant birds with the aim
of investigating the situation of bird strikes at wind
farms. Sample images are shown in the top row of
Fig. 1. In this dataset, a number of very small birds
(about 100× 100 pixels in a 4K image) were captured
and annotated (e.g., “crow” and “hawk”). However,
since images were taken only by fixedly-installed cam-
eras, the background is not changed. With drones, a
variety of backgrounds such as sky, forest, buildings,
rice fields, and roads are observed. Birds are captured
with those background scenes. Furthermore, motion
blur is inevitable in images taken from moving drones.
Therefore, this dataset [5] is not suitable for our pur-
pose (i.e., distant bird detection from a drone that can
be operated in various scenes).

2.2 Object Detection

Many modern CNN-based object detection algo-
rithms (e.g., Faster R-CNN [7]) scatter anchor boxes
in the CNN features, estimate the confidence score
of each anchor box as an object, and then classify
each box having a high confidence score to each object
class. This two-stage detection algorithm has high per-
formance but high computational cost. On the other
hand, SSD [26], DSSD [6], and YOLO [27, 28] directly
estimate the confidence score of each scattered anchor
box’s class. These one-stage detection algorithms are
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Figure 1: Comparison between a previous tiny-bird detection dataset [5] (above the dashed line) and ours (below
the dashed line). Our proposed dataset has rich variations in the background and the posture of the birds.

computationally inexpensive and have potential appli-
cations in real-time detection on low-performance ma-
chines.

However, these object detection methods scatter an-
chor boxes densely in the image, resulting in multi-
ple overlapping detections for a single object. There-
fore, they use Non-Maximum Suppression (NMS) to
remove overlapping results. Since NMS checks overlaps
among all detection results, the computational cost in-
creases significantly as the number of detections be-
comes larger. This is a critical problem for distant
object detection because a huge number of tiny miss-
detections are unavoidable in general for tiny object
detection.

CenterNet [8] achieves object detection by estimat-
ing the object’s center position and the box’s width
and height. The probabilities of object positions are
represented as a heatmap in each object class. In its
detection process, a lightweight 3 × 3 max-pooling is
used to extract peaks from the heatmap for object de-
tection. Since this peak extraction has sufficient per-
formance as an alternative to NMS, it has the potential
to be a real-time processing method even for detection
in high-resolution images.

In this paper, we conduct experiments using Center-
Net as one of the SoTAs for efficient object detection,
while further improvement in tiny bird detection [9] is
achieved with super resolution (SR) (e.g., single image
SR [10, 11, 12] and video SR [13, 14]).

3 Dataset Development

3.1 Image Capturing

Since drones flight in various locations, images with
various backgrounds such as in fields, mountains, and
near houses are required for our dataset. Birds also
need to be captured in various conditions, such as on
the ground, in-flight, or downward from a high altitude.
However, it is extremely unlikely that wild birds will
appear in the images when the drone captures such
locations. It is also difficult to capture a large number
of bird images only in natural environments. In order
to collect such a large number of bird images, we asked
a hawker to fly hawks in various conditions. Examples
of the collected images are shown in the middle row
of Fig. 1. The resolution of these hawk images are
relatively higher (between 50 × 50 pixels and 150 ×
150 pixels).

Furthermore, several kinds of wild birds were also
captured both in city areas and rural areas. Since such
wild birds fly in a higher sky, the resolution of these
bird images are relatively lower (between 10 × 10 pixels
and 50 × 50 pixels). Examples of the images are shown
in the bottom of Fig. 1.

In all images mentioned above, birds were captured
from a short distance of at least 20 meters and more
than 200 meters to ensure variation in size. The images
were captured using a camera onboard the Mavic 2 Pro,
with a resolution of 3,840 × 2,160 pixels with 30 fps.



Hawk Crow Wild bird

Figure 2: Examples of bird bounding-boxes with various scales in three classes.

3.2 Annotation

In our dataset, we needed to annotate distant birds.
With a single frame, it is very difficult for annotators
to find a small bird or distinguish a bird from other
flying objects such as an insect or airplane. In a video,
however, it is relatively easy to detect moving objects,
even small ones, and classify them. Therefore, we used
VATIC [29], an annotation tool for tracking, to anno-
tate them. This tool allows us to annotate while check-
ing a continuous sequence, making it easy to find small
but moving objects and distinguish them between birds
and other irregularities based on their movements. Ei-
ther of the three object labels (i.e., Hawk, Crow, and
Wild bird, as shown in Fig. 2) is provided to each
bounding box. The interpolation function of VATIC
between frames also makes it easy to obtain annota-
tion information for the frames in between by anno-
tating only two frames in a continuous sequence. This
makes it possible to prepare a large dataset in a short
time. Four people in total did the annotation, and
the data was distributed so that the same annotator
annotated scenes of similar genres to prevent negative
effects caused by the bias of human annotation ten-
dencies. Despite these measures, manual annotations
frequently fail. Therefore, we double-checked all se-
quences to check for mistakes.

In total, our dataset has 21,837 images. These im-
ages are divided into 16,754 training images and 5,083
validation images. The number of instances (i.e., bird
bounding-boxes) is 34,367. In the training and valida-
tion images, 24,919 and 9,548 instances are included.

4 Experiments

We conducted experiments with our dataset. As
mentioned in Sec. 2.2, Centernet [8] is employed for
the baseline. While the original Centernet is proposed
with several variants of ResNet [18] (e.g., ResNet18 and
ResNet101 [17]), the one employed in our experiments
consists of the Hourglass network [16] for improving
the performance of tiny object detection.

4.1 Training

In our dataset, many birds are in complex back-
grounds that make detection challenging, such as
forests and rice fields. Such hard-examples lead to
training unstable. On the other hand, in the Yoshi-
hashi dataset [5], most birds are in the sky background
and easy to be trained. Therefore, Centernet was pre-
trained with the Yoshihashi dataset. For this pre-
training, we used 10,081 images. After the pre-training,
CenterNet was fine-tuned with our proposed dataset.

We used the Adam optimizer with β = (0.9, 0.999)
for both pre-training and fine-tuning. The learning rate
is 2.5e-4. The mini-batch size is 32. Since the image
is huge, it is divided to patch images each of which
is 512 × 512 pixels due to memory constraints. Each
patch image is fed into Centernet both in training and
inference. Patch images are randomly cropped for data
augmentation as described below.
Data augmentation: Random flip, random scal-
ing, random cropping, and color jittering are stan-
dard data augmentation techniques. However, color
jittering might lose the important appearance cues of
tiny objects by disarranging their silhouettes. Con-
versely, smooth textures in negative regions (e.g., sky
and clouds) might be changed to be similar to the sil-
houette of a tiny bird. In our dataset, many birds are
captured tinily as shown in Fig. 2. Indeed, we empiri-
cally found that color jittering degrades the detection
performance of Centernet.
Iterative hard-negative training: Since most re-
gions in images are the sky in the Yoshihashi dataset
and our proposed dataset, if we perform random crop-
ping uniformly on these images, birds as positive sam-
ples and hard-negative samples that are likely to be
misclassified to birds (e.g., leaves in forests and edges
of turbines) are not trained enough. Therefore, we crop
patch images randomly but with a high sampling rate
in the area of these regions.

Since the bounding boxes of birds are known in the
training dataset, patch images are sampled so that they
contain the bird regions with a high sampling rate. The



Table 1: Evaluation results with mAP. (a) All data
augmentation techniques are used. No hard-negative
training. (b) All data augmentations except color jit-
tering are used. No hard-negative training. (c) All
data augmentations except color jittering are used. It-
erative hard-negative training. DA, HN, and CJ mean
data augmentation, hard-negative training, and color
jittering, respectively.

Fixed Drone
(a) All DAs with no HN 66.72 61.70
(b) No CJ with no HN 71.33 41.51
(c) No CJ with HN 72.03 72.13

sampling rates of positives and negatives are 8 and 2,
respectively. Negative samples are selected from tex-
tured regions for mainly sampling hard-negatives.

4.2 Inference

During inference, each image with 3,840 × 2,160 pix-
els is divided into 40 patch images without overlap at
regular intervals. Each patch image is fed into Center-
net for bird detection.

4.3 Results

We conducted experiments with the Yoshihashi
dataset [5] and our proposed dataset, which are called
“Fixed” and “Drone” in Table 1, respectively. Among
all detection results given by Centernet, if each detec-
tion satisfies the following two conditions, this detec-
tion is regarded as a positive detection: (1) the score
of each detection is above a pre-defined threshold, and
(2) its IoU with the ground-truth bounding-box of a
bird is also above a threshold. These thresholds were
determined with validation data selected from training
data. These detection results are evaluated by mAP, as
shown in Table 1. In the baseline method (a), all data
augmentation techniques including random flip, ran-
dom scaling, random cropping (between 0.6 and 1.4
times scaling in our experiments), and color jittering
(CJ in Table 1) were employed, and no hard-negative
training was achieved. In (b), different from (a), color
jittering was not used. In addition to (b), iterative
hard-negative training was performed in (c). In Ta-
ble 1, we can see that (c) is the best. This result
validates that the detection performance of Centernet
can be improved by carefully-selecting data augmenta-
tion techniques and iteratively-learning hard-negatives.
Examples shown in Fig. 3 shows the effect of hard-
negative training and excepting color jittering.

Several examples of bird detections in our proposed
dataset are shown in Fig. 4. In the top and middle
examples, birds in textureless and textures regions are
detected correctly, respectively. In the bottom exam-
ple, it is difficult to detect such a blurred bird. These

(a) All DAs with
no HN

(b) No CJ with
no HN

(c) No CJ with
HN

Figure 3: Effect of data augmentations (DAs) and
hard-negative (HN) training.

(1) True-positives in the sky background

(2) True-positive in the forest background

(3) False-negative in the rice-field background

Figure 4: Detection results in our dataset. Red and
blue bounding-boxes indicate the ground-truth and de-
tection boxes, respectively.

results validate that images with a variety of difficulty
grades are included in our dataset.

5 Concluding Remarks

In this paper, we proposed a new dataset for de-
tecting distant birds captured by a drone camera. Fu-
ture work includes bird tracking in videos for improv-
ing detection robustness to intermittent false-positives
in continuous frames. Moreover, even the high-speed
CenterNet can only achieve about 6 fps on a GPU,
which is not enough for real-time processing on a com-
puter mounted on a drone. A more lightweight al-
gorithm for real applications is needed. This work
was supported by JSPS KAKENHI Grant Number
19K12129.
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