Pix2Point: Learning Outdoor 3D Using Sparse Point Clouds and
Optimal Transport
Supplementary Material

This document aims to provide further details re-
garding the implementation and additional results to
element discussed in the main paper. We also provide
an ablation study of our proposed method.

1 Implementation Details

This section provides additional details regarding
the implementation of loss functions and evaluation
metrics.

1.1 Loss functions

Chamfer distance The chamfer distance is the
average of squared euclidean distances to the nearest
neighbour from one set to the other. It is defined be-
tween two point sets S7 and S5 as follows:
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In our implementation, we performed the compu-
tation of the chamfer distance using the pytorch-3d
python library [11].

Optimal transport or OT distance This dis-
tance allows to compare point sets distributions, there-
fore two 3D point clouds showing a rather small OT
distance value reveal 3D distributions that are close to
each other. It is defined straightforwardly for point sets
with equal cardinality as:
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where ¢ is a one-to-one mapping and can be generalised
to handle cardinality-unbalanced point sets.

Solving (2) comes with a heavy computational cost,
hence we consider the Sinkhorn divergence, an effi-
cient regularised approximation [3, 8]. The computa-
tion were performed using the geomloss library [5]

1.2 Evaluation Metrics

Here we provide a formal definition of the perfor-
mance criteria we are considering for the 3D recon-
struction task.

Completeness is the coverage, in per cent, of the
target point cloud by the predicted points. A target

point is covered if a predicted point lies in its surround-
ing (i.e. fixed radius ball). We evaluate completeness
values for radius of 50 cm, 25 cm and 10 cm.
Accuracy is the distance d, in meter, from the r-th
percentile of the distances to the nearest neighbour,
from the predicted point cloud to the ground-truth
point cloud. It measures the greatest distance to the
nearest neighbour among the predicted points closest
to the ground truth. We choose r < 90% to include
most of the points and discard eventual outliers.
Relative accuracy is similar to the accuracy,
where every distance to their nearest neighbour is di-
vided by the norm of the corresponding target point.
It provides a higher penalty to short-range predictions.
Formally, we define P; and T} the predicted and
target point clouds of the j-th scene respectively.
Every point from one point cloud is provided with
a nearest neighbour distance to the other point
cloud. 51(]) = minyer, [|2; — y|| where x; € Pj, is the
distance from a predicted point to the closest target
point. Reciprocally we note ’y(J) = mingep; |z — yil
where y; € T;. Also we provide relative distance
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Let A = {6(]) Vj,i} and T' = {'y(j) Vj,i}, we define
the proposed criteria as follows:
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where d is the nearest neighbour distance threshold,
r €]0,1] and | - | denotes the cardinality.

2 Ablation Study

This section is dedicated to an ablation study of
Pix2Point.

We present in Table 1 every increment and their
respective performance from bottom to top. Starting
with the prediction of N=2500 points using the PSGN
approach [4] with the network parameters optimised
to minimise either the chamfer distance or the OT
distance. The last two rows show the performances
of these approaches in terms of accuracy and com-
pleteness for several thresholds. PSGN minimising the
chamfer distance provides better precision than PSGN-
OT while showing equivalent or slightly better ground-



Table 1. Incremental performance evaluation
from bottom to top. P2P refers to the proposed
Pix2Point method, OT stands for Optimal Trans-
port loss, and C for chamfer distance loss. N is
the number of predicted 3D points

N | Increment Complete. 1(in %) [Accuracy |
50cm  25cm  10cm |in | rel.
P2P-ResNet-OT 71.3 48.8 15.1 |1.92 0.18
10k P2P-VGG-OT 67.4 47.7 14.7 {1.79 0.19
P2P-VGG-C 64.4 36.0 8.0 10.85 0.05
DensePCR [7] 59.9 23.5 3.5 |1.77 0.18
5.5 PSGN-OT(4] 61.53 2079 172 [2.47 0.36
PSGN-C[4] 60.19 32.98 6.09 |0.97 0.06

truth completeness for the chosen threshold. However
current completeness thresholds do not highlight the
OT benefits as PSGN-OT prevail over PSGN-C for
greater completeness threshold values. To overcome
the poor number of points predicted by the PSGN
unit, a PointNet-like [9, 10] module already trained to
map from 2500 element point cloud to a corresponding
10000 element point cloud is added. This densification
module is trained by minimisation of the chamfer dis-
tance in a supervised fashion to augment the number
of points by a given factor. We report in Table 1 the
DensePCR-like approach [7] that includes PSGN-OT
followed by the densification module. A moderate gain
is noticeable for small completeness threshold values
and the accuracy has further improved as the num-
ber of predicted points per scene increases. Instead
of training each unit individually, we propose to learn
the parameters of both units in an end-to-end fashion.
First, by using a VGG backbone and minimising the
chamfer distance, referred to as P2P-VGG-C in Ta-
ble 1, we obtain significantly better completeness, as
well as good absolute and relative accuracy, which is
expected as the minimisation of the chamfer distance
implies a low value for accuracy. Alternately, the same
architecture is optimised to minimise the OT distance.
This model referred to as P2P-VGG-OT, reveals bet-
ter completeness while preserving the same accuracy
as DensePCR. Our approach achieves moderately bet-
ter completeness performances by replacing the VGG
backbone with a ResNet Backbone, P2P-ResNet-OT.

3 Data Processing

3.1 Data Augmentation

Geometric: KITTI scenes exhibit chirality, hence,
usual image flipping augmentation during training
would highly deteriorate predictions at test time.

Figure 1. Clockwise: RGB image of a scene (top),
bird’s eye view of the corresponding full refer-
ence point cloud (right) and its 10K points sub-
sampling used as training target (left). Blue de-
notes highest points of the scene while red denotes
lowest points near the ground

Therefore geometric augmentation was not used.

Colour: Pix2Point architecture comprise instance
normalisation layers that would demean usual colour
transformations, therefore we did not consider colour
augmentation.

3.2 Point cloud sub-sampling

We constructed the 10k points training dataset by
randomly choosing 10k non-zeros pixels in correspond-
ing KITTI depth maps. By doing so, training point
clouds are built to match the full reference point cloud
spatial distribution. Fig. 1 shows that resulting target
point clouds and reference point clouds share the same
spatial distribution of points.

4 Additional Results

In this section, we display predictions on more
scenes for AdaBins [1], BTS [6], Pix2Point-VGG-OT,
Pix2Point-VGG-C and Pix2Point-ResNet-OT in Fig-
ure 2. As stated in the main paper, these figures show
the Pix2Point architectures achieve a better coverage
by predicting points further than AdaBins and BTS,
especially for OT variants. They also display lower er-
ror globally.
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AdaBins P2P-VGG-C P2P-VGG-OT P2P-ResNet-OT

Figure 2. For each scene, first row: 3D ground-truth and predictions for the RGB image according to Ad-
aBins [1], BTS [6], our Pix2Point VGG-chamfer, VGG-OT and ResNet-OT, all trained on 10k points. 3D
representation following [2]. Bird’s eye view where the colour encodes the altitude. Second row: the input
RGB image and the ground-truth-to-prediction error map for each method. errors are from 0 (blue) to 50cm

(red).



