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Abstract

We propose an efficient gesture recognition method
for continuous finger gestures in untrimmed videos.
We aim to discriminate similar finger gestures such as
flicking. This type of gestures which are conducted only
by the orientation and movement of the fingers tends
to be similar, making them difficult for a correct classi-
fication since a clear temporal boundary of each target
gesture is ambiguous. Thus, the recognition should fo-
cus on the accuracy to find the temporal boundaries of
the target gestures. We proposed a framework based on
a triplet-loss network which learns to decrease the dis-
tance of true positive boundaries while increasing that
of false positive ones. Finally, we adopt a temporal
representation of the segmented gesture using a stack
of feature maps for gesture classification. Real-time
processing and high performance are achieved with rel-
atively compact deep learning models, which are evalu-
ated on a new dataset of vehicle driver finger gestures.
Our approach outperforms the results of previous works
for online temporal segmentation and gesture classifi-
cation, and it can run in real-time at 53 fps.

1 Introduction

Hand gesture recognition is an essential part of
human-computer interaction (HCI). In particular,
touchless automotive user interfaces controlled by hand
gestures can provide comfort and safety on driving
while manipulating secondary devices like audio and
navigation systems. A real-time vision-based system
developed for hand gesture recognition has to deal with
issues such as discrimination of natural movements of
the hand while driving, intraclass variability in the du-
ration of the gesture, recognition of continuous hand
gestures, and a low computational cost for working on-
line [1, 2, 3].

Recent proposals for continuous hand gesture recog-
nition use deep convolutional neural networks (CNN)
and 3D-CNN with multi-modal data inputs [4, 5, 6, 7].
Most of the state-of-the-art approaches from this task
come from the ChaLearn LAP ConGD challenge [3],
which focuses on recognizing gestures from continuous
RGB-D videos. However, the gestures presented in this
challenge are different from those needed for control-
ling touchless automotive interfaces. Since driver hand
gestures have to avoid driving distractions [8], gestures
performed while holding the steering wheel are chosen

for this task. Thus, driver hand gestures are limited
to finger gestures such as flicking, pointing or gesture
combinations of fingers.

Flicking gestures are conducted only by the orien-
tation and movement of isolated fingers. Therefore,
various directions and continuous gestures may look
similar in motion and appearance, making a challenge
for recognition systems. For instance, Fig. 1 shows the
similarities between isolated (denial) and continuous
gestures (two flicking left), by illustrating the segmen-
tation of the three motion states: preparation, nucleus,
and retraction [9]. It is clear that the preparation and
retraction are similar between different finger gestures,
besides nucleus sate from continuous gestures may also
share motion and appearance similarities, such as two
continuous flicking left and an isolated denial gesture,
as shown in the figure. A robust finger gesture recogni-
tion approach has to avoid similar states between dif-
ferent classes (preparation and retraction), as well as
discriminate between similar gestures conducted con-
tinuously. These issues can be tackled by an efficient
temporal segmentation method able to perform online.
Temporal segmentation consists of defining temporal
boundary frames (start and end) of the gesture so that
the gesture classification can be focused on target ges-
ture frames only.

In this paper, we propose a two-stage approach to
overcome the challenges of continuous finger gesture
recognition. Temporal segmentation is based on a
triplet-loss network at the learning stage, which is suit-
able for discriminating the temporal boundaries of each
gesture1. With this loss function, the network learns
to decrease the distance between the correct temporal
boundaries while increasing that between false posi-
tives boundary frames [10]. For gesture classification,
we adopt a temporal representation of the segmented
frames using a stack of feature maps to preserve the
temporal information. In addition, we provide the spa-
tial hand location based on the SSD (Single Shot Multi-
Box Detector) object detector [11]. Finally, we ensure
real-time performance by taking advantage of a recent
compact network architecture aimed at mobile deploy-
ment [12]. We evaluated our approach on a new dataset
of continuous vehicle driver finger gestures, which con-
sists of eight gestures captured from 20 subjects using
an IR camera.

1For simplicity, from now on we refer to the nucleus state of
gestures just as a “gesture”
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Figure 1. Example of similarities between isolated and continuous gestures. The top row shows a sequence
of an isolated gesture (denial). The bottom row shows a sequence of two continuous gestures (flicking left).
Red arrows illustrate a finger motion from the previous frame. Red frames represent the boundaries of target
gestures. Our proposal is capable of correctly recognizing these three gestures.

The main contribution of this paper is a two-stage
continuous finger gesture recognition approach based
on a triplet-loss network and feature maps stacking
for temporal segmentation and gesture classification,
respectively. Empirical evaluation demonstrates that
our proposal: 1) outperforms previous works for online
real-time gesture recognition such as [13]; 2) achieves
real-time performance (up to 53 fps) with small size
models (19.2 MB in total).

2 Related Work

Based on the way to approach temporal segmen-
tation, recent works for continuous action and ges-
ture recognition can be divided into four categories:
frame-wise [13, 14], sliding windowing [7, 15], binary
classification [16, 6], and boundary similarity [17, 18].
Frame-wise-based methods classify gestures frame by
frame, some approaches apply a link process of frame
scores to temporal limitate the continuous gesture de-
tected [13, 14]. The second category aims to spot tar-
get gestures by sliding temporal windows [7, 15], a fixed
time window limits its performance when gestures with
significant variations on length are detected.

Binary classification approaches aim to discriminate
between gesture and no-gesture frames [16, 6]. The
main drawback of this category comes when huge sim-
ilarities between both classes are presented, leading to
many false positive recognition errors. On the other
hand, similarity-based methods focus on specific simil-
itudes between the starting and ending frames of target
gestures. For instance, in [17] the motionless of gesture
boundaries is proposed to detect starting and ending
frames. Issues of this category appear when there are
boundary frames out of the initial similarity assump-
tion.

Similar to binary classification approaches, we pro-
pose to detect possible boundaries by classifying be-

tween boundary and non-boundary frames. However,
we overcome the possible false positive errors by intro-
ducing a triplet-loss network which detects start and
end frames based on learned similitudes (conversely
to similarity-based methods which are usually prede-
fined). Additionally, inspired by [19, 15] we consider
the motion by appending frames as extra channels in
the input of our network. Thus, features extracted
from the convolutional neural network (CNN) encode
the motion contained in contiguous previous frames. In
this way, we avoid expensive computational cost meth-
ods such as optical flow and two-stream CNN architec-
tures.

3 Proposed Method

The input of our gesture recognition method is a
sequence of S frames, i.e., (ft, ft−1, ..., ft−S+1), where
t represents the current input frame. The output for
each frame is a bounding box and the hand gesture
label if the current frame is an ending boundary. As
illustrated in Fig. 2, we introduce a novel proposal ap-
proach for temporal segmentation based on a triplet-
loss function at the learning stage (Sec. 3.1). Finally,
the gesture is classified using a temporal feature map
stacking and two extra depth-wise convolutional layers
(Sec. 3.2).

3.1 Triplet-loss based temporal segmentation

We claim that finger gestures can be temporally seg-
mented by detecting boundary frames from their sim-
ilarity. Before the triplet-loss procedure, we propose
a method for boundary detection which additionally
regresses the hand location of the driver. Boundary
detection is defined as a binary classification, where
the network discriminates between boundary and non-
boundary frames. We build our proposal on the SSD



Figure 2. Overview of our hand gesture recognition proposal. From the current frame, we extract convolutional
features and perform object detection to get hand location and binary classification results. If a boundary
is identified, we propose an extra convolutional layer (red color cuboid) trained with a Triplet-loss function
to define an embedding vector. When a second boundary is detected, we determine temporal boundaries by
evaluating the similarity between both embeddings. Finally, we propose a temporal stacking of feature maps
and extra convolutional layers for gesture classification (lighted blue cuboids).

detector [11], which classifies and regresses the bound-
ing box of the object in a single-stage architecture. In
order to ensure real-time performance, a compact and
faster version named SSD lite is adopted as presented
in [12].

MobilenetV2 [12] is defined as a base network for
our proposal. This architecture exploits the depth-wise
convolutions and introduce the inverted residual block
of convolutions, making MobilenetV2 an efficient com-
pact network capable to perform on mobile devices.
Since NIR-frames have only one channel, and a single
frame lacks motion information, we define the input
of the network by appending previous frames as extra
channels. Thus, the input I is defined as

I = {ft, ft−1, ft−2, ..., ft−S+1} (1)

with size of (M,N,S), where S defines the number
of appended frames, and M,N the spatial size of the
frame, which is fixed to 300×300 for the SSD approach.
We empirically found that S = 3 is suitable based on
the tradeoff between computational cost and accuracy.

The triplet-loss function [10] aims to minimize the
Euclidian distance between the anchor and “difficult
positive” samples while penalizing that between the
anchor and “difficult negatives”. A difficult positive
sample belongs to the same class as the anchor but has
a large Euclidian distance. Conversely, “difficult neg-
atives” present a short distance belonging to different

classes. This phenomenon often occurs when detect-
ing boundary frames of finger gestures. For instance, a
difficult negative appears in the isolated gesture of the
example shown in Fig. 1. The distance between bound-
ary frames (highlighted in red) and the fourth frame
of the denial nucleus is very short; although they be-
long to different classes (boundary vs. no-boundary).
Therefore, we propose to build a Euclidean space where
distances directly correspond to a measure of bound-
ary similarity. The temporal segmentation is reduced
to a similarity check between two embeddings of pos-
sible boundary frames, defining a correct detection if
D(εs, εe) > Th, where Th is the similarity threshold,
and D(εs, εe) is the Euclidean distance of embeddings
from possible starting (εs) and ending (εe) boundaries.

The training stage of a triplet-network relies entirely
on the quality of triplets used to calculate the loss,
being triplet mining crucial for the process. Online
triplet mining obtains reliable triplets for each batch
of samples, the biggest L2 distance between anchor-
positive (xai , x

p
i ) and the smallest between anchor-

negative (xai , x
n
i ), respectively [10]. The triplet-loss is

defined by:

L =

B∑
i

[
||f(xai )−f(xpi )||

2
2−||f(xai )−f(xni )||22−α

]
(2)

where α is a margin that is enforced between posi-



tive and negative pairs, f(x) is the embedding of fea-
ture x in to a Q-dimensional Euclidean space, and B
is the number of samples per class in the batch. In
our proposal, embeddings are defined as ε = f(ψ(x)),
where ψ(x) represents a depth-wise convolution with
batch normalization, ReLu6 non-linearity and a fully-
connected layer, x is the features maps obtained from
MobileNetV2, and Q = 60.

Finally, the proposed temporal segmentation pro-
cess (illustrated in Fig. 2) is defined in four steps:
1) find a boundary clip with at least two consecutive
boundary frames, and store the embedding of the high-
est scored frame; 2) keep the feature maps of the no-
boundary frames detected after the boundary clip; 3)
when a second boundary clip is identified, define the
temporal segmentation with D(εs, εe) > Th; 4) clear
stored memory if no second boundary clip detected af-
ter T time; leave the embedding of the ending boundary
otherwise (for continuous gestures).

3.2 Feature map stacking for gesture recognition

Recent works focused on gesture recognition tend
to use 3DCNN or multi-stream CNN which results in
huge networks difficult to train and implement for real-
world applications [7, 16, 6, 17, 18]. In contrast to those
methods, we focus on rendering the network compact
and maintain acceptable accuracy. Therefore, we add a
few depth-wise extra layers and reuse the feature maps
calculated from the base network.

Inspired by [7], we adopt a temporal stacking

method for the feature maps. Let Mφ
i the i-th fea-

ture map, i ∈ {1, 2, ..., C}, from the φ-th frame, φ ∈
{1, 2, ..., t}, where C is the number of channels at the
last convolutional layer of the base net, and t is the cur-
rent frame (the ending boundary). Thus, the temporal
stacking is defined as

M ′ =
[
M1

1 ,M
2
1 , ...,M

t−1
C ,M t

C

]
(3)

In this way, we keep the temporal structure of the fea-
tures before the next step which is temporal pooling. It
is worth noting that we apply the same base network
frame-wise. Thus, feature maps may contain similar
information in the same temporal order since weights
are shared2. Temporal pooling is applied so that the
output size is equal to (M,N,CK), where M = N is
the spatial size of the feature maps, and K is a tunable
parameter which defines the ideal representation length
of all gestures. The M ′ pooled features are feed to two
depth-wise convolutional layers with batch normaliza-
tion, ReLu6 non-linearity, and dropout. The last fully-
connected layer uses softmax to determine the class of
the temporally segmented gesture. The gesture classi-
fication process is illustrated in the right part of Fig. 2.

2We are aware that this temporal structure may be lost after
convolutional and fully connected layers. However, this is part
of the limitations of using CNN models by considering real-time
performance.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 3. Example of the eight classes of our
dataset: (a) flicking down, (b) flicking left, (c)
flicking right, (d) flicking up, (e) circle, (f) de-
nial, (g) open, and (h) release.

4 Experimental Results

4.1 Dataset

We evaluate our approach with a new dataset which
consists of more than 2,800 instances of continuous fin-
ger gestures performed by a driver holding the steering
wheel. Eight classes are included: flicking down, left,
right, up, denial, circle, open and release. A total of 20
subjects recorded gestures in three different positions
of the steering wheel. Videos are recorded at 30 fps
with a NIR camera. Individual frames are normalized
to 640×480 pixels, 8-bit depth. Figure 3 illustrates all
the gestures included in the dataset. The whole data is
split into training, validation and test sets, which con-
tains 1,536, 432 and 928 instances respectively. Frame-
wise annotations of motion states are provided for the
complete dataset, whereas, hand bounding boxes just
for the training set. Therefore we cannot evaluate the
performance of hand location properly.

4.2 Implementation details

We implement all models using PyTorch, with train-
ing executed on a single Nvidia GeForce GTX 1080.
We resize the input frames to 300 × 300 as the orig-
inal SSD proposes. All models were trained with the
training set, and the best model is selected based on its
accuracy on the validation set, then reported results are
based on unseen data from the testing set. In total, we
have three different models, SSD lite, triplet-network,
and gesture classification. Each of them was optimized
with different parameters. We trained the base net-
work with SSD lite on the top. Thus, we freeze all
layers of MobileNetV2 for the other two models.

We train the SSD lite model using mini-batch SGD
with Nesterov momentum of 0.9, and mini-batches of



Table 1. Results comparison between our pro-
posal variations and ROAD.

Method tIoU@0.3 tIoU@0.5 tIoU@0.8
Binary 0.73 0.68 0.59

Similarity 0.76 0.71 0.61
Triplet 0.82 0.77 0.67
ROAD 0.74 0.70 0.57

size 64. The initial learning rate was 0.01 and decayed
by 0.98 every epoch. The MobileNetV2 architecture
was reduced 25% from its original proposal with an
input of 300×300×3 so that the last convolutional layer
outputs feature maps of size 10 × 10 × 240. Since the
dataset includes two classes different than one finger
gestures (open and release) we train with three classes:
rest (holding the steering wheel), boundary, and no-
boundary frames.

The triplet network was trained using the Adam op-
timizer with a learning rate of 0.0001 with exponential
decay after 150 epochs, B = 32, and α = 0.2. The
extra depth-wise convolutional layer uses 120 filters of
size 1×1, and the fully connected layer includes 60 hid-
den neurons. We experimentally set Th to 0.55. We
train the gesture classification model similar to SSD
lite, with SGD and the same parameters except for
the learning rate 0.045, and the size batch of 32. We
vary the value of K between the length of the short-
est and the longest gesture (in terms of the number of
frames), we get the best results with K = 8, so that
the stacked feature maps are pooled to 10× 10× 1920.
Both depth-wise convolutional layers include 960 and
480 1× 1 filters, respectively.

4.3 Temporal segmentation and gesture recogni-
tion

The performance of our gesture spotting ap-
proach is evaluated based on the class-aware temporal
Intersection-over-Union score (tIoU) at different detec-
tion thresholds. The score counts when the gesture
label is correctly predicted and the tIoU between pre-
dicted and ground-truth boundaries is higher than the
detection threshold.

We compare our results with the proposal of [13]:
Real-time Online Action Detection (ROAD). This is
one of the few state-of-the-art approaches that can per-
form online without comprising the memory storage
with huge models (such as 3DCNN-based approaches).
We trained ROAD with a reduced VGG-16 network
and the conventional SSD, by using their publicly avail-
able code on Pytorch. Table 1 shows performance
of variations of our approach compared with ROAD.
“Triplet” is our approach as described in Fig. 2; “Simi-
larity” variation excludes the triplet-loss network, thus
the similarity check is based on a hot-vector extracted
from the last 1×1 convolutional layer of SSD lite; “Bi-

Figure 4. Average tIoU per class using a detector
threshold of 0.5. Results from each variation of
our approach (Binary, SSDlite, and Triplet-loss).

Figure 5. Confusion matrix of Triplet-loss.

nary” temporally segment the gesture excluding the
similarity check based on the binary classification of
SSD lite (boundary vs. no-boundary frames).

As can be seen from Table 1, the results of our
triplet-loss-based approach outperform the other two
variations, showing that by measuring the similarities
between boundary frames the temporal segmentation
is improved. We also overcome the results of ROAD,
which problems rely on its frame-wise recognition. Fig-
ure 4 shows the average tIoU@0.5 per each gesture.
Flicking up gesture presents the lowest results due to
the appearance of gesture and boundary frames are
very similar. On the other hand, the recognition per-
formance of correct temporal detections is presented in
the confusion matrix shown in Fig. 5. The misrecogni-
tion error of flicking right with flicking up (26%) is due
to the apparent similarity of these gestures generated
by the perspective when the hand is at the farthest
point from the camera location.

Table 2 presents the test time speed of the four ap-
proaches altogether with the model size in terms of
storage memory consumption. We can notice that the



Table 2. Test time speed and model size compar-
ison.

Method Speed Model size
Binary 15 ms (67 fps) 15 MB

Similarity 17 ms (59 fps) 15 MB
Triplet 19 ms (53 fps) 19.2 MB
ROAD 25 ms (40 fps) 95.1 MB

fastest method is the one based on SSD lite for tempo-
ral segmentation; however, it achieves the lowest tIoU
score. On the other hand, our triplet-loss approach can
perform on real-time with an acceptable model size.

5 Conclusion

In this paper, we proposed a continuous finger ges-
ture recognition approach. Temporal segmentation is
based on the triplet-loss function at the training stage
by emphasizing the appearance and motion similari-
ties of the boundary frames. Our gesture classification
approach leverages the detected target gesture frames
by modeling the motion sequence with stacked feature
maps extracted frame-wise. We can conclude that our
proposal is suitable for similar finger gesture recog-
nition and it can achieve real-time performance with
compact convolutional neural networks.
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