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Abstract

This work proposes a new method to accurately com-
plete sparse LiDAR maps guided by RGB images. For
autonomous vehicles and robotics the use of LiDAR
is indispensable in order to achieve precise depth pre-
dictions. A multitude of applications depend on the
awareness of their surroundings, and use depth cues
to reason and react accordingly. On the one hand,
monocular depth prediction methods fail to generate ab-
solute and precise depth maps. On the other hand,
stereoscopic approaches are still significantly outper-
formed by LiDAR based approaches. The goal of the
depth completion task is to generate dense depth predic-
tions from sparse and irregular point clouds which are
mapped to a 2D plane. We propose a new framework
which extracts both global and local information in or-
der to produce proper depth maps. We argue that sim-
ple depth completion does not require a deep network.
However, we additionally propose a fusion method with
RGB guidance from a monocular camera in order to
leverage object information and to correct mistakes in
the sparse input. This improves the accuracy signif-
icantly. Moreover, confidence masks are exploited in
order to take into account the uncertainty in the depth
predictions from each modality. This fusion method
outperforms the state-of-the-art and ranks first on the
KITTI depth completion benchmark [21]. Our code
with visualizations is available at https: // github.
com/ wvangansbeke/ Sparse-Depth-Completion .

1 Introduction

Depth completion is predicting dense depth maps
from a sparse point cloud. In many computer vision
applications, precise depth values are of crucial im-
portance. In recent years this task has gained atten-
tion due to industrial demand. Other computer vision
tasks, among which 3D object detection and tracking,
2D or 3D semantic segmentation and SLAM can exploit
these accurate depth cues, leading to better accuracy
in these fields. This work will focus on self-driving cars,
while using sparse LiDAR and monocular RGB images.
Here, it is desirable to accurately detect and differenti-
ate objects close as well as far away. The LiDAR gen-
erates a point cloud of its surroundings, but the limited
amount of scan lines results in a high sparsity. LiDARs
with 64 scan lines are common and still expensive. The

sparse and irregular spaced input points make this task
stand out from others. Since a vast amount of applica-
tions use LiDAR with a limited amount of scan lines,
the industrial relevance is indisputable, currently lead-
ing to a very active research domain. The reason why
this task is challenging is threefold. Firstly, the input is
randomly spaced which makes the usage of straightfor-
ward convolutions difficult. Secondly, the combination
of multiple modalities is still an active area of research,
since multiple combinations of sensor fusion are possi-
ble, namely early and/or late fusion. This paper will
focus on the fusion between RGB info and the LiDAR
points. Thirdly, the used annotations are only partially
completed. The construction of the pixel-wise ground
truth annotations is expensive after all. Our method
needs to cope with this constraint.

The contributions of this paper are:

(1) Global and local information are combined in or-
der to accurately complete and correct the sparse
input. Monocular RGB images can be used as
guidance for this depth completion task.

(2) Confidence maps are learned for both the global
and the local branch in an unsupervised manner.
The predicted depth maps are weighted by their
respective confidence map. This late fusion ap-
proach is a fundamental part of the framework.

(3) This method ranks first on the KITTI depth com-
pletion benchmark with and without using RGB
images. Furthermore, it does not require any ad-
ditional data or postprocessing.

Attention will be given towards the handling of
sparse data and the guidance of LiDAR with other
modalities, in particular RGB images.

1.1 Handling sparse data

Completing missing information while also correct-
ing the input has a wide range of applications. Inpaint-
ing, denoising and superresolution can all be considered
parts of the depth completion task, making depth com-
pletion relevant for those specific sub-tasks.

Older methods use handcrafted approaches in order
to perform the local upsampling of the sparse input,
by usage of complex interpolation techniques. Even
more recently, J. Ku et al. [9] have achieved impressive
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results without making use of convolutional neural net-
works (CNNs). They artificially make the input denser
by morphological image processing techniques and pre-
dict the final depth from this intermediate state. These
methods are however prone to errors in the LiDAR
frame, making a CNN a more powerful tool for the
depth completion task. It’s important to know that
the 3D LiDAR points are mapped to the 2D plane,
making standard 2D convolution a viable option. De-
spite the more dense input, convolution operations are
not designed to operate on this data, since only valid
points ought to be considered by the network. In fact,
recent works have also shown that convolutional neu-
ral networks can achieve exciting results for this task.
Jaritz et al. [7] and Ma et al. [13] both use a deep neural
net, while encoding the sparse values with zeros. They
argue that a deep network is necessary for this job. We
argue that a combination of a local and global network
is a more elegant and an intuitive solution, furthermore
yielding better results.

Uhrig et al. [18] propose sparsity invariant convo-
lutions in order to take into account the sparse in-
put. They perform normalized convolution operations
by propagating the validity mask through each layer
to be invariant towards the degree of sparsity. El-
desokey et al. [1] propose a similar solution. Here, a
confidence mask is propagated which requires a second
convolution for every layer in order to perform the nor-
malization and to generate a the confidence mask for
the next layer. We also experiment with uncertainty,
but on a higher level, in order to efficiently combine
the feature maps extracted by the global and local net-
work. HMS-Net [5] goes even further by adopting a
multi-scale network and proposing new operations for
concatenating, bilinear up-sampling and adding sparse
input maps. We find that those operations are not nec-
essary if the sparsity is constant in every frame, since
we notice no accuracy gains when including these mod-
ified operations. We therefore stick to the conventional
convolutions in our method and show that our frame-
work can handle sparse LiDAR data. Furthermore,
adding a validity mask to the sparse input shows no
effect on the output accuracy which is in line with the
findings of Jaritz et al. [7].

1.2 Guided depth completion

By now, multiple methods already include RGB
data in order to generate better results. How to com-
bine different sensors is still an open research question.
Recent works include fusion techniques in order to gen-
erate richer features and a better prior for the depth
completion task. RGB data will be used to guide our
local network. We now discuss recent guidance and fu-
sion techniques in the context of depth completion.
Guidance: In one line of work, Schneider et al. [17]
include RGB information in order to generate sharp
edges for the depth predictions. They use pixel-wise

semantic annotations to differentiate multiple objects
and they use a geodesic distance measure to enforce
sharp boundary edges. Ma et al. [13, 14] make use of a
ResNet-based deep neural network which takes the 4D,
RGB-D, as input. Furthermore, Ma et al. [14] take a
self-supervised approach which requires temporal data.
They now make use of two streams in order to combine
the LiDAR data and RGB images in the same feature
space, leading to better results. Instead of completing
the input immediately Zhang et al. [20] predict surface
normals by leveraging RGB data, leading to a better
prior for depth completion. They finally combine these
predictions with the sparse depth input to generate the
complete depth maps. Like us, they found that com-
pleting sparse data from standalone sparse depth sam-
ples is a difficult task, proving the importance of RGB
guidance.
Fusion: The fusion of multimodal sensor data is not
straightforward. For example Li et al. [11] upsample
low resolution depth maps guided by the RGB images
and take a late fusion approach. In fact, different fusion
techniques can be considered: early fusion, late fusion
or multi-level fusion. Valada et al. [19] adopt the latter
technique by extracting and combining feature maps
at different stages in the encoder from multiple input
streams. In general most works, such as [7, 2], show
that late fusion can achieve better performance. We
propose a combination of early and late fusion show-
ing good results on the KITTI benchmark [21]. In our
work, early fusion takes the form of a guidance map
for our local network extracted from global informa-
tion. Uncertainty is adopted in the depth predictions
to accomplish late fusion. Further, conventional fusion
techniques such as adding, concatenating or multiply-
ing feature maps are utilized.

2 Method

Our method acts on a projection of a 3D point cloud
to a 2D plane. Here, the depth completion problem is
approached as a regression problem. Our approach re-
quires supervision by using the ground truth to train
our CNN and encodes the missing LiDAR input val-
ues with zeros. The targets are reliably composed by
using semi-global matching (SGM) and temporal infor-
mation [18], but they are still semi-sparse (around 30%
is filled). Using the sparse input and the semi-sparse
ground truth, the convolutional framework makes use
of global guidance information to correct artifacts and
to upsample the input properly. This correction of ar-
tifacts is not explicitly addressed in previous works.
Hence, our method makes use of global and local in-
formation in order to complete the input. Since Li-
DAR is characterized by mistakes due to moving ob-
jects and the moving LiDAR itself, both parts are nec-
essary to get accurate predictions. The local network
will interpret local information, whereas the global net-
work extracts global information based on the LiDAR



Figure 1. The framework consists of two parts: the global branch on top and the local branch below. The local branch
also takes into account the guidance map of the global network. The framework fuses global and local information
based on the confidence maps in a late fusion approach. Figure 3 shows that this structure can correct mistakes in
the LiDAR input.

and RGB information. Fusion between the two net-
works results in a final depth map. We will later show
that depth completion does not require a deep network.
First, the two parts of the framework will be explained
in more detail.

2.1 Extracting local and global information

The global branch can be considered as a prior,
namely to regularize the features extracted by the lo-
cal path. Since there are mistakes in the LiDAR input
frames, the global information helps the local network
to detect these artifacts and to reconstruct the sparse
input more accurately. We argue that global informa-
tion is relevant. Firstly, the global network is able to
detect (moving) objects and is able to detect structures
in the frame that have likely the same depth. Secondly,
we expect that a more gradual depth map will be com-
puted in order to prevent sudden and wrong variations
in the LiDAR input. This information can be deter-
mined by examining the RGB input since borders of
objects can be extracted more easily due to its color
information. Hence, semantically meaningful informa-
tion can be exploited.

The local network examines the input LiDAR frame
and performs the local up-sampling. To remedy the
noisy LiDAR data, we fuse the LiDAR map together
with the global guidance map. On the one hand, the
reasoning behind this guidance technique is that the
local network can further focus on the correct and con-
fident LiDAR points. On the other hand, the global
network can reason about objects, its edges and larger

structures in the frame. Finally a residual learning ap-
proach has been used in order to keep improving the
predictions, implemented by skip connections over the
small local networks.

2.2 Exploiting uncertainty

We make use of uncertainty in both the global and
the local network. Both parts of the framework predict
a confidence map. In this way the confidence map acts
like a weight map for the final fusion between the two
input types. Thus, the weighing is performed per pixel
and completely learned by the network in an unsuper-
vised manner. Using this technique, uncertainty in the
different network paths is utilized to give more atten-
tion to a certain input type, based on the learned con-
fidence weights. The network learns to prefer global in-
formation over local information in certain regions. In
fact, in locations with accurate and sufficient LiDAR
points, the local network will produce depth predic-
tions with a high confidence, whereas global informa-
tion will be utilized where the LiDAR data is incorrect
or scarce, such as at the boundaries of objects. This
fusion method is an effective way of combining multiple
sensors which is supported by our results in section 3.

2.3 Network

The global network is an encoder-decoder network
based on ERFNet [16] while the local network is a
stacked hourglass network. The latter consists of two
hourglass modules in order to learn a residual on the



original depth predictions, inspired by ResNet [4] and
body pose estimation architectures [15], with merely
350k parameters in total. Each consists of six layers,
has a small receptive field and downsamples only two
times by using strided convolutions. No batch normal-
ization [6] is present in the first convolution layer and
in the encoder of the first hourglass module, since the
amount of zeros will skew the layer’s parameters, es-
pecially when the input sparsity is not constant. The
structure of the hourglass module can be found in ta-
ble 1. An ERFNet-based global network has been cho-
sen since it achieves a high accuracy on the Cityscapes’
benchmark [22] while still being real-time.

The global guidance map is fused with the sparse
LiDAR frame, in order to exploit the global info. This
resembles early fusion as a guidance for the local net-
work. On the one hand, the global networks provides
three output maps: a guidance map with global infor-
mation, a depth map and a confidence map. On the
other hand, the local network provides a depth map
and a confidence map. By multiplying the confidence
map with its depth map and adding the predictions
from both networks, the final prediction is produced.
The probability values for the confidence maps are cal-
culated by utilization of the softmax function. This se-
lection procedure allows the framework to choose pixels
from the global depth map or the adjusted depth val-
ues from the stacked hourglass module. Thus, the final

depth prediction d̂ exploits the confidence maps X and
Y which equates to expression 1. A visualization of the
total framework can be found in figure 1.

d̂out(i, j) =
eX(i,j) · d̂global(i, j) + eY (i,j) · d̂local(i, j)

eX(i,j) + eY (i,j)

(1)

Table 1. Hourglass network.

Layer Kernel Size/stride Filters
Conv/Relu 3x3/2 32
Conv/Relu 3x3/1 64
Conv/Relu 3x3/2 64
Conv/Relu 3x3/1 64

TransConv/BN/Relu 2x2/2 64
TransConv/BN/Relu 2x2/2 32

3 Experiments

For the experiments a Tesla V100 GPU was used
and the code is implemented in Pytorch. We evaluate
our framework by computing the loss on all pixels of
the ground truth since not all input pixels of the Li-
DAR are correct. The KITTI depth completion bench-
mark [21] is our main focus, since it resembles real-
life situations accurately. The KITTI dataset [3] pro-

Table 2. Ablation study on KITTI’s validation
set.

Configuration RMSE [mm] MAE [mm]
Local Net (LiDAR) 995 268
Global Net (RGB) 3223 1473
Global Net (LiDAR) 1020 300
Global Net (RGB ‖ LiDAR) 881 235
Local+Global+Uncertainty 810 224

+Guidance skip 802 214
+BN 819 223
+Extra Hourglass 811 222

vides 85898 frames for training, 1000 frames for evalu-
ation and 1000 frames for testing. An ablation study
is shown first, followed by a comparison with current
state-of-the-art.
Ablation study: In all cases we perform data aug-
mentation by flipping the images vertically. Rotating
and scaling the LiDAR input while resizing the RGB
input had no effect on the final results due to the mag-
nitude of KITTI’s dataset. Furthermore, since the Li-
DAR frame does not provide any information at the
top, we crop the inputs to a 1216x256 aspect ratio.
We first train both parts of the framework individually
and use a pretrained ERFNet on Cityscapes [22] for
our global network. Afterwards, guidance for the lo-
cal network is added. Hence, the framework is trained
end-to-end and forced to combine the predictions of
the two networks based on their certainties with this
late fusion approach. We adopt the Adam optimizer [8]
with learning rate of 10−3 and use a batch size of 8.

Multiple loss functions were implemented. Our
proposed focal-MSE loss, inspired by [12], performed
slightly better than the vanilla-MSE loss (by a few
mm’s) and also better than the popular BerHu loss [10]
for the depth prediction task. It is shown in equa-
tion 2. A focal term has been added in order to
give wrongly predicted points during training a slightly
higher weight in the loss expression. Furthermore, this
regression loss is worth to try in other domains. The
loss measures the correctness of the final depth map,
the global -and local depth map. We weigh the three
terms respectively with 1, 0.1 and 0.1.

λ(ŷ, y) =
1

n

n∑
i=1

(1+0.05 ·epoch · |yi− ŷi|) ·(yi− ŷi)2 (2)

Both the RMSE (root mean squared error) and the
MAE (mean absolute error) are used to evaluate on the
KITTI benchmark, but we mainly focus on the RMSE
since it is the leading metric on the benchmark. The
ablation study in table 2 shows that the combination of
a global and a local network leads to impressive results.
In fact, our late fusion method, based on uncertainty,
contributes to a large accuracy gain. By exploiting



Figure 2. Visual comparison with state-of-the-art. The green box shows the area to focus on in the depth maps. Our
method shows better results around objects. For example, on the right of the pillar, the other two methods produce
incorrect depth values.

the guidance map, we eventually outperform previous
works. We furthermore stick to 2 hourglass modules so
that the inference time does not increase unnecessarily.
Adding batch normalization (BN) to all the convolu-
tions in the local network increases the MAE slightly,
due to the high degree of sparsity. We conclude that
the local network alone can already achieve good re-
sults with only 350k parameters. However, in order to
correct mistakes we exploit the global network by pre-
dicting uncertainty maps and a guidance map.
Comparison: Table 3 reports the results on the
KITTI testset. We outperform Ma et al. [14] (cur-
rently ranked first on the KITTI depth completion
benchmark [21]) by a significant amount on all metrics,
while the frame rate is 4 times higher. Furthermore,
we also rank first on the benchmark when we only use
LiDAR information in our framework (no RGB images
are used) in table 3. From this testset data we conclude
that the framework can extract semantically meaning-
ful information in order to guide the local network.

Figure 3 displays an example from the validation
set. Here, the confidence maps clearly show that the
global network is more certain around edges and loca-
tions where the LiDAR sensor is incorrect (green box).
This proves the effectiveness of this framework. Figure
2 demonstrates the differences between our method and
other state-of-the-art methods. It shows that we pre-
dict more accurate depth values around close as well
as far away objects.

4 Conclusion

We proposed a framework guided by RGB images
in order to complete and correct sparse LiDAR frames.

Table 3. Comparison with state-of-the-art on the
testset based on RMSE[mm], MAE[mm] and t[s].

Network RGB RMSE MAE t
SparseConvs [18] 7 1601 481 0.01
NConv-CNN [2] 7 1268 360 0.01
Spade-sD [7] 7 1035 248 0.04
Sparse-to-Dense [14] 7 954 288 0.04
HMS-Net [5] 7 937 258 0.02
FusionNet (Ours) 7 923 249 0.02
Spade-RGBsD [7] X 918 235 0.07
NConv-CNN-L1 [2] X 859 208 0.02
HMS-Net v2 [5] X 842 253 0.02
NConv-CNN-L2 [2] X 830 233 0.02
Sparse-to-Dense [14] X 815 250 0.08
FusionNet (Ours) X 773 215 0.02

The core of the idea is leveraging global information by
using a global network. Furthermore, we exploit con-
fidence maps in order to combine both inputs based
on the uncertainty in a late fusion approach. We suc-
cessfully regress towards the semi-sparse ground truth
annotations using our focal loss. This method takes 20
ms inference time, hence it meets the real-time require-
ments for self-driving cars. Finally, we evaluated our
method on the KITTI dataset where we rank first on
the depth completion benchmark.
Acknowledgement: The work was supported by
Toyota, and was carried out at the TRACE Lab at
KU Leuven (Toyota Research on Automated Cars in
Europe - Leuven)



Figure 3. Example on the validation set. The green
box shows that our framework successfully corrects
the mistakes in the sparse LiDAR input.
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