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Abstract

In this paper, we propose a data-driven visual
rhythm prediction method, which overcomes the pre-
vious works’ deficiency that predictions are made pri-
marily by human-crafted hard rules. In our approach,
we first extract features including original frames and
their residuals, optical flow, scene change, and body
pose. These visual features will be next taken into an
end-to-end neural network as inputs. Here we observe
that there are some slight misaligning between features
over the timeline and assume that this is due to the dis-
tinctions between how different features are computed.
To solve this problem, the extracted features are aligned
by an elaborately designed layer, which can also be ap-
plied to other models suffering from mismatched fea-
tures, and boost performance. Then these aligned fea-
tures are fed into sequence labeling layers implemented
with BiLSTM [9] and CRF [10] to predict the onsets.
Due to the lack of existing public training and evalu-
ation set, we experiment on a dataset constructed by
ourselves based on professionally edited Music Videos
(MVs), and the F1 score of our approach reaches 79.6.

1 Introduction

Visual rhythm prediction has caught people’s atten-
tion for years, since it can enable many valuable ap-
plications like automated video editing. This problem
can be described as given a segment of videos, we want
to decide whether each time point is an onset or not,
as earlier works discussed [3][12]. But most of the pre-
viously proposed methods have a main disadvantage or
disability: they primarily rely on human-crafted hard
rules to compute the visual onsets [3][5][12][11], and
can only perform well on a small set of specific videos,
like dancing video without camera moving.

We admit that, the visual rhythm is hard to rigidly
define with a simple formula, due to the variety and
complexity of rhythm-related visual cues, including: 1.
visual content changes; 2. movement of lens or camera;
3. environmental lighting conversion; 4. scene changes;
5. motion of performers, etc.

However, the visual rhythm can be indirectly re-
flected by the corresponding musical rhythm to some
extent, especially in the professionally edited MVs,
which enables us to learn how to predict visual onsets
from MVs of high quality. So we propose a data-driven
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Figure 1. For a given video, we can predict the
visual rhythm by deciding a time point to be an
onset or not. While training the predictor with
professionally edited MVs, the results of audio
onset detection will be used as labels to rectify
the predictor. The blue parts will be executed at
both testing and training stage, while the green
parts will only be executed at the training stage.

method for visual rhythm prediction with an end-to-
end Feature-Aligned Network (FAN), and train it with
sufficient data.

In our method, the visual rhythm is related with
various visual cues mentioned above, we first extract
the features closely linked with these cues, including 1.
original frames; 2. frame residuals; 3. optical flow; 4.
scene change; 5. body pose. The detailed reason why
and by how we extract them will be further explained
in Section 3.

Then these extracted visual features are fed into
FAN to predict the onsets. Here, we observe that there
are some slight misaligning between features over the
timeline, and assume that this is due to the distinctions
between how different features are computed. For ex-
ample, the body pose is decided by only a single frame,
while the frame residuals depend on two consecutive
frames and scene change is influenced by a few con-
tinuous frames. So after the extraction and transfor-
mation, we align features with an elaborately designed
layer, which can also be applied to other models suf-
fering from mismatched features, and bring in perfor-
mance improvement. Next, the aligned features are
fed into final layers implemented with BiLSTM [9] and
CRF [10] to predict the onsets, as we further formalize
the visual rhythm prediction as the general sequence
labeling problem. The architecture and details will be
further explained in Section 4.
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Figure 2. Our approach with the end-to-end
Feature-Aligning Network (FAN). Extracted vi-
sual features are fed into the sequence labeling
layers after transformation and aligning, which
predicts the rhythm onsets.

Due to the lack of public training and evaluation set,
we construct a MV Visual Rhythm (MVVR) dataset by
ourselves based on MVs published on the Internet. In
our dataset, as we assume that the visual and musical
rhythm will properly match each other in professionally
edited MVs, the results of musical onset detection is
taken as ground truth. In the experiment, the F1 score
reaches 79.6, which proves our method to be effective.

2 Related Work

2.1 Visual rhythm prediction

In this part, we will briefly review the previous work
on visual rhythm prediction. Davis et al. [3] suggest
that the sudden visible deceleration of the moving ob-
ject can indicate the visual rhythm, and measure it by

calculating the optical flow of videos. However, this
rule-based method cannot distinguish the motion of
central subject from the background or camera mo-
tion, and even minor camera motion disturbance can
be a great interference for the detection, the motion
patterns are too complicated to be well described with
concise formulas.

Argüello et al. [5], Chu et al. [12] in another per-
spective, come up with the similar idea that visual
rhythm can be treated as periodic patterns in actual
motion, and then employ different motion detection
methods to eventually extract visual rhythm onsets.

Chen et al. [11] describe visual rhythm in a more
rough way as the occurrence frequency of rhythmic
events like human movement and environment light-
ing change. Absolute frame difference and 2D angle-
magnitude histogram of optical flows are used in this
article to measure such frequency. However, it can not
precisely predict the visual onset events timing and
only estimate how intense the visual rhythm is.

The previously mentioned methods are all rule-
based, and their key problem lies in that it can only
perform well on a small set of specific videos, like danc-
ing video without camera moving. Therefore, we refer
to deep representation learning to handle more com-
plicated patterns and enrich the expressiveness of our
model.

2.2 Musical onset detection

Musical onset detection is an area that has been
explored for years and can bring us much inspiration,
since it is also modeled as a sequence labeling problem.
Bello et al. [6] present a rule-based model and have
achieved one of the best results by unsupervised meth-
ods. But this has soon been outperformed by meth-
ods employing deep neural networks [7][8][16], which
convinces us to address the visual rhythm prediction
problem with deep learning methods.

3 Visual Feature Extraction

In our method, we first extract rhythm-related fea-
tures from the visual content, and the results will be
subsequently fed into the end-to-end network — FAN,
to predict visual onsets.

Considering the visual content changes, movement
of lens or camera, environmental lighting conversion,
scene changes and motion of performers as visual
rhythm cues in videos, we extract features as follow-
ing:

Original Frames From original frames, we can know
what is shown in the video, which is helpful to the
rhythm prediction when the video is periodically
changing the performing content. Here we simply
take frames from RGB channels.
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Figure 3. Two segments drawn from one video. In
(a), the optical flow exactly matches the change in
the frames, but the scene change detection result
seems to be delayed. In (b), “peaks” of the optical
flow and scene change are in the same position,
but both fall behind the original frames.

Frame Residuals The residual of frames implies the
movement of the lens or objects, which can also
reflects the visual rhythm [11]. In this part, we di-
rectly compute the residual between two adjacent
frames with subtraction.

Optical Flow Detection Optical flow is the pattern
of apparent motion of image objects between two
consecutive frames caused by the movement of ob-
jects or the camera. It reflects the intensity of
the action in videos, which offers us some visual
rhythm cues. In this part, we adapt the Lucas-
Kanade method [14], which solves the basic opti-
cal flow equations for pixels in a neighbourhood by
the least squares criterion, to gain a feature map
whose size is the same as original frames.

Scene Change Detection Scene change detection
divides a video into physical shots, which are video
sequences that consists of continuous number of
video frames for particular action. In this part,
we make use of a video sequence detection method
[15] based on the three dimensional histogram
of color images, which gets the pattern of scene
change by comparing the difference of histograms
and their size between consecutive frames.

Body Pose Detection Most musical videos contain
human movement (In the searching results of
“MV” on YouTube, 99% of the videos contain hu-
man figures and their body motion), and human’s
regular move pattern is also a good indicator for
visual rhythm [5][12]. For this part, we refer to the
state-of-art work of pose estimation [1] to extract
body movement in a key point level.

4 FAN: Feature-Aligning Network

In the end-to-end Feature-Aligning Network, we
take the previously extracted features as inputs, and
first transform them into a common feature vector
space (Section 4.1). After this, to alleviate the ob-
served mismatching problem, we align them with an
elaborately designed layer (Section 4.2). These aligned
features are next fed into sequence labeling layers (Sec-
tion 4.3) to predict the onsets. The whole prediction
process is illustrated as Figure 2.

4.1 Feature Transformation

For the original frames and feature maps extracted
by frame residuals, optical flow detection and body
pose detection, we further transform them into feature
vectors with ResNet-34 [17].

As for the low-dimensional feature extracted by
scene change detection, we expand it into a high-
dimensional feature space with fully connected layers.

4.2 Feature Aligning Layer

We observe that there are some slight misaligning
between features over the timeline, as shown in Fig-
ure 3. Since the input video frames are selected by a
common criteria, we assume that this problem is due
to the distinctions between how different features are
computed. Body pose is decided by only a single frame,
corresponding to the original frame. As for the frame
residuals and optical flow, they depend on two consecu-
tive frames, while scene changes are influenced by a few
continuous frames. So on a single time point, frames
that are related with each feature vector are different,
possibly leading to the misaligning problem.

Besides, misaligned features can seriously harm the
performance of the prediction network. This is because
all features along a time point will be mixed and then
mapped to a new feature space during the subsequent
feature transformation, which turns the misaligned fea-
tures to worthless even adverse noise. In addition, the
offset is position-sensitive, which means that it cannot
be eliminated by simply working on the process of fea-
ture extraction.

Therefore, we propose to alleviate this problem by
a feature aligning layer, which can automatically learn
how to align features over the timeline. More specif-
ically, it employs the attention mechanism over se-
quence [13], with which great progress has been made
in Natural Language Processing (NLP) area, especially
on the machine translation task. For a group of fea-
tures G, the aligning layer rearrange it with the scaled
dot-product attention as Figure 4.

Denote t = 1, . . . , T as the time indicator with T the
length of this segment of video, d ∈ G as the feature
indicator of this group, X ∈ RT×D as the concatenated
extracted features with D the total dimension, p as the
maximum offset.



Figure 4. The results of rearranging a group of
features by feature aligning layer is the weighted
sum of values (a range of time points with this
feature group), with attention weights computed
by scoring the relevance of the query (this time
point with all feature) and keys (a range of time
points with all features).

Then by applying two group-specific transformation
matrices W q,WK ∈ RD×D, we can define the scaled
dot-product attention scores s ∈ R2p+1 and the nor-
malized attention weight α ∈ [0, 1]2p+1, from which
the rearranged results X ′ ∈ RT×|G| can be computed
as following

si =
(W qXt)(W

KXi)
T

√
D

∈ R (1)

αi =
exp(si)∑t+p

j=t−p exp(sj)
∈ [0, 1] (2)

X ′t,d =

t+p∑
i=t−p

αiXi,d ∈ R (3)

Here Xt plays the role of query, Xi plays the role
of key, and Xt,d plays the role of value. The result of
rearranging a group of features by aligning layer is the
weighted sum of values, with attention weights com-
puted by scoring the relevance of the query and keys.
Furthermore, by examining the attention weights, we
can know how features are rearranged to align with
each other.

The feature aligning layer is also an organic part of
the end-to-end network, since the aligned results are
next fed into subsequent layers, in which the training
loss is back propagated. Thus the parameter matrices
W q,WK , determining how values are weighted, can
be optimized by taking gradient on the loss.

4.3 Sequence Labeling Layers

Given a sequence of frames, deciding whether one
of it is an onset or not is indeed a sequence labeling
problem. To utilize the information of adjacent frames,

we employ the Bidirectional Long Short Term Memory
(BiLSTM) [9] modules instead of separately predicting
on each time point.

Aside from considering the information adjacent
frames, it is also beneficial to jointly predict over the
whole sequence. For example, in a smoothing video,
it is unlikely to have two consecutive onsets in a very
short time. Thus we apply a final Conditional Random
Filed (CRF) [10] layer to make the prediction aware of
consecutive predictions.

5 Experiment

5.1 Dataset

To our best knowledge, there exists no public visual
rhythm prediction dataset. So we construct our own
dataset based on YouTube-music-video-5M1, a collec-
tion offers various styles of MVs, and published profes-
sionally edited MVs on YinYueTai2, a popular music
website. By manually filtering out poorly edited MVs,
where the visual and musical rhythm don’t match each
other, we obtained a video set of size 800.

Fixing the segment length at T = 20, for each piece
of video segment, we first separate the visual and audio
contents, then

1. Extract video frames from RGB channels as in-
put X ∈ RT×H×W×3 where H,W = 224 is the
normalized height and width. The extraction is
at 4fps, to balance the labeling sensitivity and hu-
man’s tolerance of visual rhythm deviation;

2. Take the musical onset detection result as the
ground truth y ∈ {0, 1}T .

Moreover, we wash out some excessively intense or
smooth segments whose audio onset ratio (number of
frames containing audio onsets divided by the seg-
ment length T in the sense of 4fps) beyond the range
[0.2, 0.8].

Finally, we form an MV Visual Rhythm (MVVR)
dataset whose statistic information is listed as Table 1,
where the counting is taken on musical onset detection
results, i.e. the ground truth.

Table 1. MV Visual Rhythm Dataset

Counting
Total Frames 850,620
Onset Labels 318,932

Non-onset Labels 531,688

1YouTube-music-video-5M:
https://github.com/keunwoochoi/YouTube-music-video-5M

2YinYueTai: http://www.yinyuetai.com/



5.2 Audio Onset Detection

As for the audio onset detection, we follow the work
of Sebastian Böck et al. [2], in which the spectral flux
onset strength envelope is computed, and onset events
are located by picking peaks in the envelope.

5.3 Implementation Details

In our implementation achieving the best perfor-
mance, we employ ResNets of 34 layers and 2 layers
fully connected layers to first transform extracted fea-
tures, and the dimension of transformed feature space
D is 500. Then in the aligning layer, the maximum
offset p is set as 2, and features are grouped by the
extraction. In the sequence labeling layers, we use 2
layers of BiLSTMs and the CRF to predict the visual
onsets, where the hidden state is of dimension 256.
During training, the Adam optimizer is utilized, and
the learning rate is set as 3× 10−5.

5.4 Results and Analysis

We estimate our prediction results with the metric
of F1 score, in which the precision is defined as the true
onset predictions count divided by all onset predictions
count, and recall is defined as the true onset predictions
count divided by all onsets count in the ground truth.

We experiment on the performance achieved by dif-
ferent features. Here all components in FAN are in-
volved. The main results are shown in Table 2.

Table 2. Performance improvement with different
visual features.

Precision Recall F1 Score
Frames+Residuals 61.7 99.4 76.1
Optical Flow 61.7 99.2 76.1
Scene Change 56.3 88.1 68.7
Body Pose 61.2 87.4 72.0
All Features 78.2 81.0 79.6

As the above table shows, the combination of frames
and residuals obtain the highest recall as 99.4, probably
because of the frequent object or camera motion which
leads to the predictor’s tending to label frames as visual
onsets. Frame residuals and optical flow gain similar
results, probably because they both measure the differ-
ences between two consecutive frames. However, scene
change and body pose perform not as ideal as the for-
mer features. This is possibly because, scene changes
and the body pose may be sparse in a small number of
video segments, due to the variety of our videos, since
not every frame contains changing of view or figures to
be detected. Above all, the combination of all features
reaches the best precision of 78.2 and F1 score of 79.2.

6 Conclusion

In this paper, by formalizing the visual rhythm pre-
diction as a sequence labeling problem, we proposed a
data-driven method with an end-to-end network named
Feature-Aligning Network, which utilizes the visual
features including original frames and their residuals,
optical flow, scene change and body pose, to predict vi-
sual onsets with sequence labeling layers consisting of
BiLSTM and CRF. Here, we observed the slight mis-
aligning between features over the timeline, and as-
sumed that this is due to the distinctions between how
different features are computed. Then we addressed
this problem with an elaborately designed aligning
layer, which can also be applied to other models suf-
fering from mismatched features, and bring in perfor-
mance improvement. Lastly, we constructed a MV
Visual Rhythm dataset based on professionally edited
MVs to fill the vacancy of the training set and public
evaluation set. In the experiment on this dataset, the
F1 score of our approach reached 79.6, which proved
our method to be effective.
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[5] Argüello, Camilo, and Marcela Iregui. Exploring Rhyth-
mic Patterns in Dance Movements by Video Analysis.
In International Conference on Digital Human Mod-
eling and Applications in Health, Safety, Ergonomics
and Risk Management, 2016, pp. 123131.

[6] Juan Pablo Bello, Chris Duxbury, Mike Davies, and
Mark Sandler. On the use of phase and energy for
musical onset detection in the complex domain. IEEE
Signal Processing Letters, 11(6):553–556, 2004.

[7] Rong Gong and Xavier Serra. Towards an efficient
deep learning model for musical onset detection. arXiv
preprint arXiv:1806.06773, 2018.
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