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Abstract

Diabetic Retinopathy (DR) is one of the leading
causes of preventable blindness in the developed world.
With the increasing number of diabetic patients there
is a growing need of an automated system for DR de-
tection. We propose EyeWeS, a method that not only
detects DR in eye fundus images but also pinpoints the
regions of the image that contain lesions, while being
trained with image labels only. We show that it is pos-
sible to convert any pre-trained convolutional neural
network into a weakly-supervised model while increasing
their performance and efficiency. EyeWeS improved
the results of Inception V3 from 94.9% Area Under the
Receiver Operating Curve (AUC) to 95.8% AUC while
maintaining only approximately 5% of the Inception
V3’s number of parameters. The same model is able to
achieve 97.1% AUC in a cross-dataset experiment.

1 Introduction

Diabetic Retinopathy (DR) is a worldwide leading
cause of preventable blindness, affecting more than
25% [1] of the estimated 425 million diabetic patients
in the world. The prevalence of diabetes is expected to
grow to 629 million by 2045, and the number of patients
requiring treatment will increase significantly in the fol-
lowing years [2]. In this context, early DR detection
is important for successful treatment and thus large-
scale screening programs are regularly implemented by
hospitals and local authorities in both developed and
developing countries. In these programs, diabetic pa-
tients are called to a clinic to obtain eye fundus images,
which are then sent to ophthalmologists for diagnosis.
Moreover, 34% of diabetic patients live in rural areas [2],
where the access to medical specialists is difficult and
screening programs are scarce. Also, the large number
of images to analyze and other factors such as stress
due to high clinical work-loads hinder the diagnosis
procedure. For these reasons, systems that are capable

Figure 1: EyeWeS is able to detect DR lesions
being trained with image labels only. Given a
new image, our method not only outputs whether an
image displays signs of DR or not but also highlights
the regions that contain lesions.

of automatically detecting DR are becoming increas-
ingly important for screening the growing number of
diabetic patients and reaching a larger percentage of
this population.

Over the last years, Deep Learning has become the
standard approach for the development of CAD sys-
tems. However, the development and application of
these systems in real practice is hindered by the lack of
annotated data, which is expensive to obtain, as well as
the lack of explainability of the prediction. To deal with
these obstacles, we introduce a novel general approach
to train modern Convolutional Neural Network (CNN)
architectures for the task of DR detection, illustrating
how to easily convert such architectures into weakly-
supervised models. This conversion removes the need
of data annotated lesion-wise at the pixel-level for train-
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ing, while maintaining the ability to pin-point regions
of the image that contain lesions relevant to diagnosis,
as illustrated in Figure 1. The main contributions of
this work are hence in terms of: Accuracy - our method
is shown to be accurate even in cross-dataset exper-
iments; Explainability - the designed approach finds
regions with signs of DR; Efficiency - the approach
introduced here represents a straightforward technique
to convert any current CNN architecture designed for
the task of classification into a weakly-supervised model
with a much reduced set of parameters; and Speed - our
method is fast to both classify and explain the results.

2 Deep Learning for Diabetic Retinopathy

In recent years, Deep Neural Networks (DNNs) have
started to have a strong presence in the field of med-
ical data analysis. Gulshan et al. [3] fine tuned an
ensemble of 10 inception v3 networks on a large private
dataset and reported results comparable to a panel of
seven certified ophthalmologists. However, end-to-end
Deep Learning approaches, such as the one proposed
by Gulshan et al. [3], suffer from the common criticism
of being unable to explain their decision.

Concurrently, Abràmoff et al. [4] trained several
Deep Learning models to detect DR lesions and anatom-
ical landmarks. Then, the features extracted by these
CNN models are provided to a fusion algorithm that
outputs the final grade of the exam. This way, the
decision of the method is slightly easier to explain since
it is able to identify which lesions are present in a given
image.

The next step would be to locate the lesions in the
image to further improve the model’s explainability.
The problem with this approach is that most of the
existing methods require additional time consuming
annotations, such as pixel-level annotations, in order to
output such information. Weakly-Supervised methods
are a promising solution for this problem. As opposed to
Fully-Supervised methods, a Weakly-Supervised model
is trained to learn low-level information from data, even
if the corresponding low-level ground-truth is not avail-
able but rather a higher-level source of information is
present.

A form of Weak Supervision that has been particu-
larly successful in biomedical applications is the Mul-
tiple Instance Learning (MIL) framework [5, 6, 7]. In
MIL, instead of supplying a learning algorithm with
pairs of inputs and labels, these labels are associated
with sets of inputs, also known as bags. In the case of
binary labels, the fundamental MIL assumption states
that a positive bag (e.g. an image with signs of disease)
contains at least one positive instance (e.g. a lesion).

Training MIL-based models requires only weak an-
notations. This is translated in practice to using only
image-level labels, while still classifying images based
on instance-level information, i.e. on the presence of
lesions. Requiring weak annotations simplifies enor-

mously data collection, which is a major issue in medi-
cal image analysis. However, these weaker annotations
need to be compensated by larger datasets [5]. Accord-
ingly, the availability of such large datasets is a typical
prerequisite for training MIL-based algorithms. This
need is stressed if the models to be trained are deep
CNNs, which contain a great amount of parameters to
be learned. For this reason, in this paper we propose to
embed standard Transfer Learning strategies into a MIL
framework. The technical details on how to achieve this
goal are explained in the next section.

3 EyeWeS for explainable Diabetic
Retinopathy detection

The approach proposed in this paper, referred to as
EyeWeS, consists of a combination of MIL and Transfer
Learning for deep CNNs. As such, the method is ca-
pable of formulating a decision regarding the presence
of DR on a retinal image, while detecting the image’s
regions that better explain such decision. We start by
formalizing the problem through the MIL framework
and then, following these insights, we outline a strategy
to modify current state-of-the-art CNN architectures
to better suit the Standard MIL Assumption.

3.1 Intuition

In order to train a MIL-based model on retinal images
to detect DR based on lesion presence, our goal is to
train an instance classifier from bag labels. In this
context, an image is regarded as a bag composed of
several rectangular spatial neighborhoods, i.e. image
patches. These patches are considered as instances.
Hence, the goal becomes to train a patch classifier from
image labels only.

Since patch-level labels are not available, we consider
these instance’s labels, yi, as latent variables, because
they are unknown during training. The latent labels
can be combined by means of a pooling function f into
the corresponding bag label Y = f(y1, ..., yN ). The
pooling function is responsible for encoding the relation
between the instances’ and bag’s labels.

The objective is to learn an instance classifier
P (yi|xi, θ), where xi denotes the i-th instance in an
image, and θ are the classifier’s parameters. As the in-
stances’ labels are unknown, we can only maximize the
likelihood P (Y |y1, ..., yN , x1, ..., xN , θ). Furthermore,
we assume that {X, θ} and Y are conditional indepen-
dent given y. This means that, given the labels of the
instances, both the instances and the model’s param-
eters do not provide information on the likelihood of
Y . Therefore, the goal is to find the parameters θ that
maximize the likelihood:

θ = arg max
θ

P (Y |y1, ..., yN ; θ) (1)

There are some design choices that need to be made
before implementing this idea, namely: 1) what is the
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Figure 2: Early layers of pre-trained networks are kept to constrain the receptive field of their output units. For
instance, the receptive field of the first 3× 3 Convolution is a 3× 3 region of the input image, but the receptive
field of two 3× 3 Convolutions is a 5× 5 region of the input. Then, 1× 1 Convolution layers are used to classify the
input patches. Finally, the image prediction is obtained by max pooling all the patch predictions.

learning algorithm to use for the patch classifier and
2) what pooling function f to use.

3.2 Fully-Convolutional Patch Classifier

We chose to use a CNN for the patch classifier algo-
rithm. However, instead of training a CNN on individ-
ual image patches and their corresponding labels, we
use a Fully-Convolutional Network (FCN) architecture,
which is capable of classifying image patches trained
only with the full images and the respective labels.

For that, we build on receptive field properties of
Convolutional Layers. The receptive field can be defined
as the local region in the input space that conditions
the value of a particular activation unit in a given
layer. Therefore, we can design a Fully-Convolutional
Network architecture such that the receptive field of
the last layer’s units corresponds to the desired patch
size, as depicted in Figure 2.

3.3 Combining Patch Predictions

The computed image patch predictions are then com-
bined into the image label using the max-pooling func-
tion Y = max(y1, ..., yN ), since a single positive in-
stance is enough to predict the full image as positive.
As the max function is almost everywhere differentiable,
the misclassification loss function can be directly applied
to Y and the network trained with the backpropagation
algorithm.

It is worth noting that, in practice, most binary
disease detection problems follow the Standard MIL
Assumption since the presence of a disease can usually
be inferred by the existence of a lesion in the image.
However, since the prediction is based on local infor-
mation, EyeWeS can not be used for classifying the
severity of a disease, as this usually requires the detec-

tion, classification and counting of multiple lesions that
can be spread over the entire image.

3.4 Transfer Learning in EyeWeS

When few training data is available, training a deep
CNN from scratch can be unfeasible. In these situations,
it is common practice to initialize the network from a
set of pre-trained weights and fine tune it for the given
task.

We propose to find the layer of the pre-trained net-
work whose receptive field is closer to a desired patch
size and discard all subsequent layers. This patch size
should be large enough to contain the lesions to be
detected within the image. The output of this inter-
mediate layer is then a H ×W ×K tensor with a K-
dimensional feature vector for each of the N = H ×W
image patches. Then, 1× 1 Convolutional Layers are
added in order to perform the patch classification with-
out increasing the receptive field, as shown in Figure
2.

4 Application and Results

We train and test EyeWeS on the Messidor [8] dataset
for solving the task of DR detection. Messidor images
were annotated by specialists with the corresponding
DR grade, i.e., DR level of severity, ranging from 0 (no
pathology) to 3 (most severe stage). In this work we
are only interested in detecting DR and, therefore, we
pose the problem as binary one-vs-all classification task,
distinguishing between healthy images (i.e. grade 0)
and DR images (i.e. grades 1, 2 and 3). We randomly
divided Messidor into three sets: a training set with 768
images (64%), a validation set with 192 images (16%),
and a test set with the remaining 240 images (20%).

We also perform a cross-dataset experiment to both
evaluate the generalization capabilities of EyeWeS and



Table 1: EyeWeS’ receptive field size. The optimal
receptive field (RF) size in pixels (px) for each network
is much smaller than the original image resolution.

VGG ResNet50 InceptionV3
Crop L. block4 conv1 add 3 mixed 2
RF 52× 52px 30× 30px 114× 114px
Overlap 44× 44px 26× 26px 106× 106px
N 64× 64 127× 127 61× 61

perform a qualitative assessment of its lesion detec-
tion capability. For this, we used the E-ophtha MA
dataset [9] that contains 148 images with microa-
neurysms or small hemorrhages (together with segmen-
tations) and 233 images with no lesions.

4.1 Implementation Details

The training process for EyeWeS proceeds in 3 steps:
1) select the layer of the given pre-trained model to use;
2) train the newly added layers, while keeping the pa-
rameters of the pre-trained layers constant and 3) train
the full model. All our experiments were implemented
using Keras [11] and all networks were pre-trained on
ImageNet.

In this work, we experimented with three different
CNN architectures: VGG16 [12], Inception V3 [13]
and Resnet50 [14]. The number of layers of the given
pre-trained model to reuse was treated as a hyper-
parameter and it was chosen independently for each
architecture using grid-search over all intermediate layer
blocks. Following Keras’ naming conventions, the layers
that achieved optimal performance for each architecture
were: block4 conv1 (VGG16), mixed 2 (Inception V3)
and add 3 (Resnet50). Details on the receptive field size
and overlap of each architecture are displayed in Table
1 along with the number of patches that are classified
prior to the max pooling operation.

Two 1× 1 Convolution Layers are used after the out-
put of the selected intermediate layer, the first one with
1024 units, followed by a LeakyReLU activation func-

Table 2: EyeWeS’ DR detection results on Mes-
sidor. EyeWeS achieves state-of-the-art Area Under
the Receiver Operating Curve (AUC) compared with
other weakly-supervised methods.

Architecture AUC Weakly-Sup.
Costa et al. [7] 90.00% X
Zoom-In-Net [10] 92.10% X
VGG16 83.44%
ResNet50 93.77%
Inception V3 94.97%
EyeWeS VGG16 90.00% X
EyeWeS ResNet50 94.53% X
EyeWeS Inception V3 95.85% X
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Figure 3: EyeWeS generalizes to other datasets.
ROC of EyeWeS on the E-ophtha MA dataset.

tion with slope of 0.02 and the second one with a single
unit, followed by a sigmoid activation function in order
to perform patch-level classification. These last two
Convolution Layers are trained for the first 30 epochs
with a learning rate of 10−3. Then, the full model is
trained with a learning rate of 2 × 10−4 using early
stopping with a patience of 15. Adam [15] optimizer
was used in both steps with default parameters.

The input images were cropped to the Field-of-View
and resized to 512× 512 pixels. In order to improve the
generalization of the model, dataset augmentation was
used. On top of the standard horizontal and vertical flip,
translation, rotation and scaling of the input images, a
color balance method [16] was also used as a dataset
augmentation operator as it was shown to improve
results in segmenting vessels in eye fundus images.

4.2 Quantitative Results

In order to properly evaluate our method, we per-
formed two experiments: 1. we tested on Messidor and
2. we performed a cross-dataset experiment, testing
EyeWeS on e-ophta MA. Results from experiment 1)
are shown in Table 2. The Inception V3 network ob-
tains the best results (95.85% AUC) closely followed by
ResNet50 (94.53%). On the other hand, VGG16 is not
able to achieve comparable results, attaining only 90%
AUC. Nonetheless, is is worth noting that this result is
already at the same level as other recent works [7, 10].

We also compared EyeWeS with the standard pre-
trained architectures. For that, we removed the last
fully-connected layers of the given network and applied
a Global Average Pooling layer to accommodate for
the increase in image resolution. Then, similarly to
the EyeWeS, we added two 1 × 1 Convolution layers,
the first one with 1024 units followed by a LeakyReLU
activation function and the last one with a single unit
followed by a sigmoid. All networks were trained in
the same conditions as EyeWeS. As seen in Table 2,
EyeWeS always obtains better AUC results than their



Grade 1 (Y = 1) Grade 3 (Y = 1)

Figure 4: Examples of EyeWeS’s explainable re-
sults on Messidor’s test images. Grades are dis-
played for visualization purposes only, we do not use
grade information nor lesion segmentations when train-
ing our method. Attention map: 0 1

standard counterparts.
Finally, in order to fairly evaluate if EyeWeS gen-

eralizes to other datasets, we selected the model that
performed best in Messidor, in this case, the EyeWeS
Inception V3 model, and tested it on the full E-ophtha
MA dataset. We obtained 97.12% AUC in this cross-
dataset experiment as shown in Figure 3, indicating
that our method is effectively finding microaneurysms
or small hemorrhages.

4.3 Explainability

EyeWeS produces patch-level predictions even
though it is only trained with image labels, which can
help in visually interpreting the reasons of the models’
decisions, enhancing its explainability. As expected,
the attention maps produced by EyeWeS focus on eye
lesions. In Figure 4 it is possible to visualize some
sample results on images from Messidor’s test set with
different severity labels. As can be observed, regions of
the image that the method considers pathological lie
on top of red lesions.

Another interesting result of our method is that
it focuses on small lesions while ignoring the larger
more visible ones. It is possible to see in the grade 3
image of Figure 4 that EyeWeS does not focus on large
hemorrhages and bright yellow lesions. These results
potentially mean that the method was able to correctly
identify microaneurysms as the earliest and most subtle
indication of DR.

In order to test this last hypothesis, we visualize
the attention maps produced by our method on E-
ophtha MA in Figure 5. It is possible to see that the
model’s detections mostly coincide with microaneurysm
locations.

4.4 Efficiency and Inference Time

In this section we explore the impact of our method in
the reduction of the number of parameters and inference

Figure 5: Microaneurysm true locations from E-ophtha
MA are displayed in light green. It is possible to see
that the method’s detection mostly coincides with the
dataset’s true locations. Attention map: 0 1

time. For the performance measurements, experiments
were run on a laptop equipped with a mobile Nvidia
GTX 1060 GPU. Inference times were averaged over
100 experiments. The resulting performances, within
a 95% confidence interval (CI), are reported in Table
3. We also compare EyeWeS with each of the three
corresponding CNN baseline architectures. In this case,
EyeWeS ResNet50 was 2.43× faster than its original
counterpart at test time, while EyeWeS Inception V3
was 1.68× faster, and EyeWeS VGG16 was 1.32× faster.

Implementing EyeWeS allows to reduce the number
of parameters in more than a quarter with respect to
the corresponding reference architectures, as can also be
observed from Table 3. In the extreme case of Resnet50,
the number of parameters was reduced to less than
2% of the original number. EyeWeS also reduces the
number of parameters of Inception V3 to approximately
5% of its original number, while VGG16 parameter
numbers are reduced to approximately 23%.

5 Conclusions

We have introduced EyeWeS, which addresses the
problem of explainable detection of Diabetic Retinopa-
thy from eye fundus images. Out of global image labels,
our method trains a patch classifier that can be used at
test time to detect the regions of the image that con-
tain lesions of interest for DR diagnosis. The proposed
method has been shown to be capable of accurately
detecting DR on retinal images, basing its decisions
on local information. EyeWeS’s architecture allows to
pinpoint the spatial locations triggering the model’s
decisions, which enhances its explainability.

EyeWeS has been comprehensively validated through
experimental tests on the Messidor dataset for DR de-
tection, achieving state-of-the-art results. In addition,
the same model has been tested on E-ophtha MA with-
out further re-training. Comparison with the pixel-wise
lesion ground-truth available for E-opththa MA showed
that EyeWeS’s patch classifier detects microaneurysms
as small as 3 pixels in diameter. It has also been shown
that it is possible to decrease the number of parameters



Table 3: EyeWeS is faster and has fewer parameters. Mean inference time in milliseconds with 95% CI for a
single image and number of parameters of each network.

EyeWeS Time (ms) EyeWeS Parameters Full Time (ms) Full Parameters
Inception V3 38.92± 2.67 1, 240, 673 65.50± 4.04 23, 715, 265
Resnet50 33.74± 1.30 498, 049 81.93± 3.74 25, 691, 009
VGG16 57.08± 1.25 3, 446, 081 75.39± 1.78 15, 245, 121

by more than 98% with respect to the reference CNN
architecture from which EyeWeS is derived and still
obtain more accurate results with the added ability to
explain the results.
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[5] Gwenolé Quellec, Katia Charrière, Yassine Boudi, Béatrice
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