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Abstract

Depth data based object recognition has recently
emerged as a challenging research topic. In this work, we
develop a novel approach to perform detection and recog-
nition of occluded 3D objects. We propose a hierarchical
segmentation algorithm in order to obtain the homogeneous
sub-regions contained in each depth frame which in turn fa-
cilitates the recognition under severe occlusion conditions.
Our proposal consists of three steps: the first step is to
build a tree structure contains all key sub-surfaces visible
in the depth frame with their intra-hierarchical relations.
Thereafter, we draw a classification prediction for all nodes
based on a combination of convolution and recursive neu-
ral networks. Finally, we employ the hierarchy scheme to
refine the classification results. Our proposal obtained com-
petitive results and proved to be invariant to objects scale,
rotation, and viewpoint variations.

1 Introduction

Recent computer vision sensing technology facili-
tates acquiring 3D geometric data of the surrounding
environment. Depth data acquisition with Kinect and
Structure sensor become popular among researchers in
computer vision domain. Thus depth data based researches
tackle a wide range of computer vision topics including
human action recognition [1], simultaneous localization
and mapping (SLAM) [2] and object recognition [3, 4, 5, 6].

Due to the noisy nature of depth data, object recogni-
tion with depth data is considered as one of the challenging
topics in computer vision. Improving the recognition per-
formance with depth data is essential for the development
of autonomous robots. By exploiting depth data for vision
applications, the recognition system is provided with a use-
ful source of extra information stored in the depth modality
in order to solve the complex problem of general environ-
ment recognition. Depth data is invariant to illumination
and color variations. Moreover, it provides geometric cues
and allows simple straight forward foreground segmenta-
tion. However, although the-state-of-the-art research works
show a promising recognition achievement with depth data,
it is still far away from being perfect. If we look carefully
to the object recognition achievements with RGB-D sen-
sors, RGB-Depth split-out results presented in the litera-
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ture shows that the main recognition achievement comes
from the RGB data while the recognition with depth data
is still a challenging task [7, 8]. In this work, we aim to en-
hance the recognition performance from depth-only data.
This will facilitate object recognition with depth-only sen-
sors such as Structure sensor by Occipital, Inc.

In case of occlusion, objects will be partially visible to
the depth sensor. Hence, there is a chance that some/all
local features of the targeted object are invisible which will
cause a degradation in the recognition performance. To en-
counter this challenge, our approach is based on the fact
that the 3D surface of an object is an aggregation of a
set of contiguous key homogeneous sub-surfaces. There-
fore, the recognition process of occluded objects is achieved
through the detection and the classification of visible key
sub-surfaces.

In this paper, we introduce a hierarchical approach
in order to divide the 3D object surface into a set of
homogeneous key sub-surfaces. Moreover, we employ
convolutional-recursive deep learning model proposed by
Socher et al., [9] to classify the key sub-surfaces obtained
from raw depth images in the first step. Finally, We
exploit the hierarchical relations obtained in the first
step to perform a refinement of the classification results.
Compared to other state-of-the-art 3D feature learning
methods [4, 5, 10, 11], our approach is invariant to scale
and viewpoint variation and could perform successful
recognition under severe occlusion conditions.

The rest of the paper is organized as follows: related
works are presented in the following section. Thereafter,
we present the details of our approach in Section 3. The
implementation and experimental results are presented in
Section 4. Finally, we conclude in Section 5.

2 Related work

There are various limitations within existing techniques
for 3D object recognition in terms of efficiency, robustness,
clutter, occlusion and the discrimination capability of the
feature representation. In this section, we will start by
presenting a small taxonomy of the popular approaches
which are pursued to perform the task of 3D objects
recognition under occlusion.

There are two approaches for partially occluded object
recognition. The first one is based on local features recog-
nition such as SHOT [12] or TriSI [13] and, the second ap-
proach, based on frame segmentation, is more popular in
object recognition from 2D images such as superpixel [14].
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On the other hand, 3D objects segmentations is classi-
fied into two types, namely surface-type [15, 16] and part-
type [17] segmentations. In this work, we follow a surface-
type segmentation approach. In order to cluster nonplanar
regions in surface-type based segmentation, cluster repre-
sentatives and discriminatory criteria are essential. Thus,
primitives surfaces such as spheres, cylinders and, cones are
employed by several works in order to find the best possible
fitting primitive in least squares sense. A more straightfor-
ward approach to cluster non-planar surfaces is simply to
measure the differences in normal direction or, in dihedral
angles between mesh elements or depth frame pixels [3, 5].
Depending on the tolerance of this difference, planar and
several types curved parts can be segmented.

Segmentation techniques are classified into five types,
single or multiple source region grow [18], hierarchical clus-
tering [19], iterative clustering [20], and spectral analy-
sis [21]. Since the number of regions depends heavily on
the choice of initial seeds, searching for the local optimum
of each region separately in region grow techniques may
in some cases create unsatisfactory global results. Fur-
thermore, there are times when a hierarchical segmentation
structure is beneficial for specific applications. Hierarchi-
cal clustering, while still a greedy approach, can be seen
as global-greedy because it always chooses the best merg-
ing operation for all clusters and does not concentrates on
growing one.

Similar to region-growing, the difference between various
hierarchical clustering algorithms lies mainly in the merg-
ing criteria and the priority of elements in the queue. Ac-
cording to the type of implicit approach employed for seg-
mentation, it can be classified into three types: Boundaries
construction, Top-down approach, and Inferring approach.
While previous approaches produce an unknown number of
clusters, such number is given as a priori to iterative clus-
tering approach. The approach iteratively employs k-means
algorithm to assign all segments into the given number of
clusters defined by its pre-known representatives. There are
several issues concerning iterative clustering such as conver-
gence and choice of initial representatives.

Finally, spectral graph theory demonstrates the re-
lationship between the combinational characteristics of
a graph and the algebraic properties of its Laplacian.
Due to its high computational cost, the surface must be
pre-segmented into smaller balanced-in-size sub-surfaces
each of which must be treated separately. Moreover, edges
must be minimized in order to reduce the visual effects.

On the other hand, there are several approaches em-
ployed to achieve recognition with 3D data. Recognition
based on HOT curves such as the one proposed by Joshi et
al. [22] relies on the accurate localization of inflection
points, which in turn are sensitive to noise. A novel
recognition algorithm based on spin image representation
is proposed by Johnson and Hebert [23]. However, the
proposed representation is sensitive to the resolution and
sampling of the models. Spin images map a 3D surface into
a 2D histogram [24] with a low discrimination capability
which leads to many ambiguous matches. Carmichael et al.
[25] proposed an improvement to overcome the sensitivity
of the spin images regarding resolution. However, problems
such as of the low discrimination capability of the feature
representation and the inefficiency of the algorithm remain
unsolved.

Socher et al., [9] proposed a recognition algorithm for
RGB-D data based on convolution-recursive deep neural
network (CNN-RNN) model. Using a CNN with multi-fixed
RNN tree structure. Socher et al., demonstrated that RNNs

with random weights can produce high-quality features and
the model performance could be improved by increasing the
number of features. Authors in [9] used a different tree
structure for each input and trained the RNNs with back-
propagation through a structure presented in [26]. More
recently, Boubou et al. [4] proposed a recognition system
based on extreme learning machines with a local receptive
field. The approach demonstrates a competitive recogni-
tion performance with a short computational time. The
proposed approach in [4] is proved to more robust regard-
ing objects rotation and viewpoint variation.

In this work, we present a novel hierarchical segmenta-
tion approach in order to extract key sub-surfaces and build
a robust recognition system targeting occluded objects
based on convolution-recursive deep learning approach.
Thereafter, our approach finally refines the classification
results based on the hierarchy structure knowledge built in
the first step. Our experiments show that our proposed ap-
proach performance overcome the one shown by CNN-RNN
approach and ELM-LRF.

3 METHODOLOGY

3.1 Segmentation

Briefly, our hierarchical clustering proposal is a
subsurface-type based top-down approach aiming to con-
struct a data tree from the depth input frame. Starting
from a root which represents the input depth frame, a which
is subject to segmentation process in order to partition the
root into two (or more) nodes. This process continues itera-
tively for each of the tree nodes until a certain desired node
size threshold is met. Each partitioning process is achieved
by finding the best boundary fit between two sub-surfaces.
Algorithm 1 explicates tree construction mechanism.

Algorithm 1 Hierarchical segmentation

Require: train/test depth frame
1: Create a root set Sl=1 including all segmented sub-

surfaces . Depth based threshold is used

2: Insert Sl=1 to a priority queue Ql=1
3:
4: while tree leaves can be split do
5: for size of Ql do
6: Get the top set Sli from Ql
7:

8: if Sli can be split & Ali > Amin then
9: Split Sli into a set S j . A gradual

threshold’s linear relaxation is implemented
10: Insert all S j to Ql+1

11: Move to the next level l +1

In details, let us consider a raw depth frame which is
represented as the tree root with a single element set Sl =
{Nind} where l, ind ∈ [0,∞[ are natural numbers represents
the level of the corresponding sets and, the index of the tree
node Nind respectively. A depth based threshold is used (c.f.,
algorithm 1 line 1), in order to segment the background
and spilt the rest of the tree root frame into an ordered set
of j objects or sub-objects Ql = {Nind} with corresponding
surface sizes Ali > Amin, that is l = 1, ind ∈ [2, j + 1] and j
represents the number of children nodes. Each element of
Ql will be tested for possible splitting.



(a) A training frame that contains one training view of a 3D object sam-
ple. Since the training frame has one object, root has only one child
representing the training object.

(b) Since the testing frame contains multi-objects, root has several children
representing the extracted objects/sub-objects

Figure 1. Illustrates two tree structures obtained from
3D depth data using our proposed hierarchical seg-
mentation for training and testing frames. Seeking
to simplify the tree presentation, form now on we
will represent segmentation tree structure with a sin-
gle RGB image (left-bottom corner) where each color
represents one node according to its index number.

A dihedral angles based threshold (c.f., algorithm 1
line 9) is gradually linearly relaxed from a maximum value
until the realization of node split. Resulting children will
be added to a priority set Ql+1. All leaves will be iter-
atively split until the new split surface size does not sat-
isfy the minimum split size Amin . Figure 1 illustrates two
tree structures obtained from 3D data using our proposed
hierarchical segmentation for training and testing frames.
Seeking for presentation simplification, final trees are pre-
sented as one RGB figure where each node is presented with
unique color according to the node self-index number.

3.2 Recognition Model

In this step, we consider each node of the segmentation
tree as an isolated train/test sample. In other words, in-
stead of relying on frames as training samples, our train set
is a collection of all nodes extracted from training frames.
Thereafter, we apply the recognition model on each node

of the test frame in order to draw a classification prediction
and a prediction confidence for each node separately.

In order to learn CNN-RNN model, we follow the proce-
dure described by Socher et al., [9]. Each modality is given
to a single convolutional neural network layer (CNN) [27]
which provides a useful translational invariance of low level
features such as edges. Moreover, CNN allows parts of an
object to be deformable to some extent. First, random
patches are extracted from depth data and a k-means
algorithm is used to cluster those pre-processed patches.
The single layer CNN which consists of a convolution layer,
a rectification and local contrast normalization (LCN),
is used to convolute each tree node which is previously
resized to a square dimension di pixels with K square
filters with size dp. K filter responses with size di− dp + 1
are average pooled with a pooling filter of size dl and a
stride of size s. The final output of CNN layer regarding
one input node will be a 3D matrix X ∈ RK×r×r, where
r = (di−dl)/s+1 is the size of pooling response.

Pooled filter responses X ∈ RK×r×r are given to a recur-
sive neural network (RNN) [28] which is designed to learn
hierarchical features. Here, RNNs project the inputs into a
lower dimensional space through multiple layers with tied
weights and non-linearities. Thereafter, we merge adjacent
b×b block of k-dimensional columns of X 3D input matrix

according to equation 1, where W ∈ RK×b2K is a random
weights matrix and, f is a non-linearity function.

P = f

W

 x1
...

xb2


 (1)

Applying equation 1 to all b× b blocks of X will pro-
duce a new matrix with a size equal to K× (r/b)× (r/b).
The procedure is iteratively applied until reaching a single
column with K dimension. The classification model shows
that multi-RNNs are more effective compared with a single
RNN structure. In order to employ multi-RNNs, the sys-
tem generates nR random weighting matrices {Wi} equal to
the number of RNNs. As a result, each input depth image
will generate nR K-dimensional vectors which are then given
to softmax classifier.

3.3 Classification Refinement

Depends on the minimum sub-surface size Amin thresh-
old which we set to be 500 pixels, a large number of tree
nodes represent a small sub-surfaces area down to 25× 20
pixels which is a reason for misclassification due to insuf-
ficient features found in such small areas. Now, increasing
the minimum sub-surface size Amin is actually a straightfor-
ward solution. Unfortunately, it has a major drawback that
is in reality due to occlusion and other factors related to
depth sensors capability, test frames often contain a plenty
of small sub-objects some of which are 150 pixels size or less.
Increasing Amin threshold will result in ignoring such small
visible sub-parts. Hence, to keep Amin as small as possible,
we propose a mechanism to refine the classification results
based on the classification results produced by CNN-RNN
classification model. In details, we proposed a top-down
approach to correct classification errors of the tree nodes.

Let us consider one node Nind of level l having a j children
nodes Ni that is i ∈ [1, j]. Thus, we generate a temporary
set Stemp consists of Nind node with its children. Stemp has
j+1 number of nodes, each of which has the size of Ai and
classified as class cli with ci confidence. Predicted class
clpred of all nodes in Stemp is given by equation 2, where
classq is a set of all Stemp elements classified as class q. We



implement this procedure on all tree nodes in a top-down
scheme.

clpred = argmax{∀ classq| clscore =
∑Ai.ci

∑ |classq|
} (2)

Experimental results presented in Section 4 shows that
our proposed classification refinement significantly en-
hanced the recognition performance compared with pure
CNN-RNN classifier.

4 EXPERIMENTS

(a) (b) (c) (d) (e)
Figure 2. Sample views for the 3D models of the
training dataset (first row) and their corresponding
sub-surfaces segmentation images (second row) where
each color represents a single node of the segmenta-
tion tree.

We compared the performance of our proposed approach
with the original CNN-RNN approach and two other recog-
nition approaches using a 3D objects models acquired with
a laser beam scanner by Mian et. al., [29]. The dataset
includes five training 3D objects captured with a resolu-
tion up to 640×480 (c.f., Figure 2). We generate a 36
depth frames for each object, each of which is generated
from a unique viewpoint distributed evenly on a horizontal
circle around the targeted object. The test data includes
50 scenes generated randomly by placing four or five of
the objects together in a scene. Finally, objects in each
scene were scanned from a single viewpoint and converted
to a depth test frame. The implementation of our proposed
hierarchical segmentation on train/test depth frames with
Amin = 500 results in total 1924, 1804 training and testing
key-subsurface respectively. In other words, in the case of
Amin = 500, a dataset contains 3728 key-subsurfacewas ex-
ploited for our experiments.

During experiments, we realized that the minimum sub-
surface size threshold Amin plays an important rule in recog-
nition performance. Choosing a small threshold will create
a large number of sub-surfaces which lack of discriminating
features, hence it is easier to be misclassified by recognition
methods. In Figure 3, nodes recognition rate represents the
rate of correctly classified tree nodes to the total number
of nodes. On the other hand, area-based recognition rate
represents the rate of correctly classified area size to the
total area size of all nodes. A bigger difference between
those two measures illustrates that a higher percentage of
smaller nodes are misclassified. Since increasing Amin allows
to generate a fewer number of small subsurface, it helps to
enhance the final recognition rate.

In order to choose classifier parameters configuration
such as number of CNN filters nF and number of RNNs
nR, we tested our approach with nF ∈ {32,64, ...,256}, nR ∈
{16,32, ...,128} (c.f., Figure 4). For the results presented in

Figure 3. Recognition rate for our proposed approach
versus minimum sub-surface size. Increasing the
threshold will allow fewer number of small sub-surface
to be generated, that explains the enhancement of the
recognition rate.

rest of this paper we adopt the following experimental pa-
rameters: sub-surface minimum Amin = 500, number of CNN
filters nF = 128, number of RNNs nR = 32 and, number of
initial patches nP = 2000.

Figure 4. Area-based recognition rate of our pro-
posed method changes depends on the chosen values
of nF ,nR parameters. These results are obtained with
nP = 2000 and Amin = 500.

We compare our proposed approach to other
methods such as CNN-RNN [9], ELM-LRF [4] and
DHONV+SVM [5]. We employ two measures to evaluate
the performance of all methods that are: the nodes
recognition rate and the area-based recognition rate. We
perform experiments on two types of test frames with and
without occlusion. Results presented in Table 1 show that
our proposal outperforms all other 3D depth based recog-
nition methods. In particular, recognition performance
of our proposed method shows a higher robustness under
occlusion compared with other methods.

Figure 5 shows six samples of test 3D frames in the first



Table 1. Comparison of our proposed approach to multiple 3D depth based recognition approaches. Results show
that our proposal outperform other 3D depth based recognition methods. Moreover, recognition performance of our
proposed method shows a hinger robustness under occlusion compared with other methods including CNN-RNN and
ELM-LRF approaches.

Method
Test frames with occlusion Test frames with no-occlusion
Nodes Area-based Nodes Area-based

recognition rates recognition rate recognition rates recognition rate

ELM-LRF [4] 45.527 46.4967 45.07 41.72
DHONV+SVM [5] 43.7585 50.94 54.44 65.8

CNN-RNN [9] 55.21 68.79 77.47 78.70
Proposed method 65.73 73.1 85.36 86.62

row and their corresponding sub-surfaces segmentation im-
ages are shown in the third row where each color represents
a single node of the segmentation tree. Area-based recog-
nition results of our proposed approach on those six depth
scenes are presented in the bottom row. All objects are
correctly recognized except for the rhino in (d) and (e).
The second raw illustrate the recognition results obtained
by CNN-RNN approach proposed by Socher et al., in [9].
Figure 5 demonstrates that our proposed approach is more
capable of successfully recognize smaller sub-surfaces which
will allow us to obtain a prediction with higher confidence.

5 CONCLUSION

We introduced a novel recognition approach for 3D
depth occluded objects. Our model is based on a com-
bination of hierarchical segmentation with convolutional-
recursive deep learning recognition approach. A refine-
ment of the classification results was possible based on
the knowledge obtained from hierarchical clustering of the
test frames. This architecture outperforms other 3D depth
based recognition approaches including CNN-RNN deep
learning based method.
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