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Abstract

Visual Odometry (VO) is a key component in mod-
ern driver assistance systems and robotics. Meeting the
real-time requirements is mandatory for VO in such ap-
plications. Previous works have primarily focused on
improving accuracy at the cost of longer runtime. In
this work, we propose novel strategies for feature cor-
respondence setup, outlier removal and robust pose op-
timization in the VO pipeline to achieve real-time per-
formance of close to 30 frames-per-seconds (fps) on a
dual-core 3.5 GHz CPU while maintaining high accu-
racy. In particular, computationally efficient strategies
are introduced to obtain an initial set of good features
and rapidly filter out the outliers to minimize the com-
putational overhead in later stages. In addition, we
propose a depth based weighting and saturated-residual
scheme during pose optimization to increase the robust-
ness of VO. Experimental results show that the pro-
posed VO achieves the fastest speed among all the top-
ranked VO and SLAM systems on KITTI leader-board.
Specifically, the proposed VO is 47% faster than state-
of-the-art ORB-SLAM2 with comparable accuracy on
KITTI dataset.

1 Introduction

Visual Odometry (VO) can be regarded as motion
estimation of an agent based on images that are taken
by the camera/s attached to it [10]. VO is the key
component of modern driver assistance systems and
autonomous driving systems [21, 11]. The two main re-
quirements of VO are pose accuracy and speed. Real-
time performance of VO is equally important as the
pose accuracy; particularly for safety-critical applica-
tions such as collision avoidance. Achieving real-time
performance is challenging as VO is typically deployed
on embedded systems with tight computational con-
straints. State-of-the-art systems have achieved a pose
error rate around 1% [16, 6, 4], but at the cost of high
runtime. None of the existing top-performing VO in
the KITTI leader-board [2] are capable of achieving
real-time performance1.

1.1 Related Work

We focus our discussion on feature based motion-
estimation using stereo-camera due to its suitability

1We define real-time performance to be around 30fps. Our evaluations
are performed on current standard desktop CPU.

to outdoor environments, low computation complexity
and a wide range of applicability [19, 5, 21]. Feature-
based methods use distinct image features such as SIFT
[15], ORB [18], etc., to estimate the pose by minimiz-
ing reprojection errors. They usually consist of fea-
ture correspondence setup, outlier removal and pose
optimization [10]. Feature correspondence setup ex-
tracts features from each incoming frame and estab-
lishes the feature correspondences/matches between
frames. It is the most crucial step because inaccurate
matches largely affect the pose estimates. It is also the
most time-consuming part of VO. Some methods rely
on large number of feature matches or complex fea-
tures to improve the accuracy such as MFI [3]. Viso2
[13] observed that the distribution of features is very
important and thus, it employs bucketing to obtain
better-distribution. Viso2 utilized simple features and
achieved fast tracking time (0.05 secs/frame on 1 core-
2.5 GHz), but with large translation errors (2.4%).

Feature matches are affected by image noise, false
matching and moving objects, which are usually re-
ferred to as outliers. Outliers can degrade the pose es-
timation accuracy significantly. To identify and remove
the outliers, existing systems [3, 13, 16] rely on outlier
removal methods such as RANSAC [17, 9], MLESAC
[1] and iterative outlier removal [3, 16]. These methods
are iterative and involve several operations; hence, they
are computationally complex. Also, they rely on fixed
thresholds for removing outliers which limits their ef-
fectiveness when scene changes. The RotROCC [4] in-
dicated that outlier detection based on a fixed thresh-
old is inappropriate and proposed optical flow based
scaling of the reprojection errors. Although RotROCC
[4] and SOFT [6] have better pose accuracies (< %1),
their computational cost is very high i.e, runtime of 0.1
secs/frame on 2 core-2.0GHz and 0.3 secs/frame on 2
core-2.0GHz [12]. Finally, the pose optimization stage
uses the correspondences to estimate the relative poses.

Simultaneous Localization and Mapping (SLAM) [5]
is also used to estimate the camera motion. But unlike
VO, it jointly estimates poses and map of the scene.
SLAM systems [16], [8] use loop closure and bundle
adjustment (BA) to correct the pose drifts. However,
BA is computationally expensive and is therefore, ex-
ecuted in a separate thread for map-optimization [16].
It achieves very low translation errors (< %1) and
takes around 0.065 secs/frame using 2 cores-3.5GHz.
In terms of runtime and pose accuracy, ORB-SLAM2
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is one of the best-performing methods [20].

1.2 Main Contributions

The main contributions of our work are as follows:
1. Accurate and efficient feature correspon-

dences setup. We used an adaptive threshold and
bucketing based feature extraction to obtain uniformly
distributed features that overcome the challenges of
low contrast and textureless regions. To obtain bet-
ter quality correspondences, a novel similarity measure
utilizing the feature’s location information is proposed.
This resulted in more accurate matches than existing
approaches which rely on descriptors only.

2. Adaptive outlier removal . An adaptive out-
lier removal strategy based on prior pose information
is proposed to eradicate outliers. Unlike RANSAC etc.
[3, 1], the proposed strategy does not rely primarily on
feature set for hypothesis generation, thereby enabling
it to successfully remove most outliers. This leads to
improved pose accuracy. Our method is also compu-
tationally more efficient than other techniques such as
[13], as only a single pass computation is needed.

3. Robust pose optimization . To minimize the
pose estimation errors caused by inaccurate feature
depths, the features are assigned weights based on their
position information during pose optimization. In ad-
dition, we increase the robustness of Gauss-Newton op-
timization by controlling the impact of each individual
feature in terms of residual error.

2 Proposed Visual Odometry
The number of features used per frame has a high

impact on the complexity of VO system, while the qual-
ity and distribution of feature correspondences plays a
key role in the pose accuracy. Hence, a balance be-
tween quality, distribution and quantity of features is
essential to achieve high pose accuracy with low run-
time. Outliers can contribute to low accuracy and high
computation complexity. In addition, since few false
feature matches with smaller reprojection errors are
difficult to detect for removal, there is a need for a ro-
bust pose optimization to further reduce pose errors.
Hence, we propose strategies for efficient feature ex-
traction, accurate matching, adaptive outlier removal
and robust pose optimization (Fig. 1).

2.1 Accurate and Efficient Feature Correspon-
dence Setup

Feature correspondence setup includes feature ex-
traction, stereo matching and sequential matching.
Our proposed method aims to obtain a minimal num-
ber and high quality feature correspondence that can
lead to low complexity and high accuracy.

Distribution: The proposed VO relies on ORB fea-
tures for its invariance to illumination, rotation and
scale change, and fast extraction and matching speeds
[18]. But we observed that direct feature extraction
results in features getting clumped in certain texture-
rich regions, as shown in Fig. 2 (left). Distribution

of features over the image plays an important role in
pose accuracy [13]. Large errors are incurred when
the pose is estimated using unevenly distributed fea-
tures, and is severe in poor contrast scenes. Further,
if the number of close features is insufficient, the es-
timated pose is more erroneous (Fig. 2 (left)). To
overcome this problem, we used adaptive thresholding
combined with bucketing technique to obtain a set of
uniformly spread features. The image is divided into
buckets of size 30 sq. pix. For each bucket, the features
are detected based on an initial minimum threshold. If
enough features are collected in the bucket, the process
terminates, otherwise the threshold is incremented and
process repeats until a maximum threshold. It ensures
that well-distributed high quality features are obtained
as shown in Fig. 2 (right). Although it incurs a slight
increase in computation, the overall runtime of the VO
is notably reduced due to the lesser number of features
required for accurate pose estimation.

Matching : Generally, the extracted features un-
dergo matching using the descriptor distance based
metric. In sequential matching, the features from the
previous left image frame are searched for matches by
projecting them to the current left image using smooth
motion model [13]. We also observed that many fea-
tures in the scene are repetitive in nature (similar fea-
tures appearing frequently), for e.g. the features cor-
responding to lane markings, side rails, etc. The SIFT
[15] compares the ratio of descriptor distances of two
best matches. But when such features appear fre-
quently in the successive frames, there is high tendency
of false matching if the matching criteria is purely
based on descriptor distance. This is due to the high
similarity within that class of features, and hence de-
scriptor based metric is unable to select the correct
matches. We developed a new similarity metric for se-
quential matching which utilizes the motion constraints
from estimated previous relative pose {R̂n−1, t̂n−1}
and constant velocity model [7]. The proposed simi-
larity metric combines descriptor and pixel distance as

shown in Eq. 1. The function dist(d̂
i

n,d
i
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the distance between ORB descriptors d̂
i

n and di
n−1 of
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(1)

The best match is chosen based on this minimum dis-
tance. The idea behind this formulation is: the repet-
itive feature which has best descriptor match with the
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Figure 1: VO framework consists of feature correspondence setup, outlier removal and pose optimization. In
feature correspondence setup, evenly distributed ORB features are extracted from incoming stereo images and
are stereo-matched. Inliers from previous frame are then sequential-matched with currently extracted features,
using proposed matching method. Outliers are removed using the proposed adaptive method. Finally, the pose is
estimated using inliers, by employing controlled residual and depth-weighted Gauss-Newton optimization.

Figure 2: [left]- Features detected using constant threshold are unevenly distributed. [right]- More spread features
using adaptive thresholding for features, while the number of features is the same in both of them

wrong feature will still be closer in pixel distance to the
correct feature. This increases the robustness against
false matches without incurring much additional com-
putation cost. The reduction in false matches as a re-
sult of using the proposed metric leads to lesser com-
putations in the later VO stages.

2.2 Non-Iterative Adaptive Outlier Removal

Usually, the outliers are considered to have signifi-
cantly larger reprojection errors than the rest of the
matches and therefore could have been removed by
just based on a reprojection error threshold (RET).
However, several outliers have reprojection errors close
to the inliers and therefore selecting an optimal RET
is not a straightforward task. To address this prob-
lem, existing stereo based methods usually employ 3-
point RANSAC [13] for outlier removal. But, RANSAC
based outlier removal is computationally expensive due
to its iterative nature. In addition, the estimates are
highly dependable on the choice of RANSAC parame-
ters (iteration count and RET). RET depends on the
scene. Moreover, it is not robust to outliers that are
associated with a large moving object. If the maxi-
mum support criteria of RANSAC is used, then these
points may not be detected as outliers. To resolve these
issues, we propose a non-iterative adaptive outlier re-
moval method, as shown in Fig. 3. Except initial-
ization frame, all frames contain the previous pose in-
formation Xn−1. Since VO assumes that the motion
follows smooth camera trajectory [13], a rough esti-
mate of the pose in the form of previous pose is always

available. It can be observed from Fig. 3 that the
initial prior pose is taken to be significantly different
from the ideal pose (blue line), so we do not make any
strong assumption about the prior pose and a rough
estimate is sufficient for our method. Using the prior
pose, reprojection errors of all the points are calculated
and sorted (step 1). We assume that a minimum inlier
ratio of r (30%) is always maintained. Then among
’N ’ available features, (r ·N)th minimum reprojection
error is found and approximated using the ceil function
to obtain RET,reth.

reth = d(r ·N)th minima of ren e (2)
Finally, all points with reprojection error lesser than
this RET are set as inliers. Thus, these inliers are al-
ways based on the previous pose and are not affected
by random outliers and outliers associated with mov-
ing objects. The proposed method is computationally
more efficient than existing iterative outlier removal
methods as only a single pass computation is needed.

2.3 Robust Pose Estimation
To improve the robustness against false matches with

smaller reprojection errors, a new saturated residual-
error method is proposed. We also exploit the fact that
far features are more prone to depth inaccuracies and
propose depth-weighted scheme.

Saturated Residual : False matches with rela-
tively large reprojection errors are more harmful as
they negatively impact the pose optimization. The
adaptive outlier removal method described earlier re-
moves outliers and false matches with large reprojec-
tion errors. But there is possibility that false matches
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Figure 3: Adaptive outlier removal concept. Step 1 computes reprojection errors of all feature correspondences
using the estimated prior poseXn−1, and finds the inlier threshold adaptively using Eq.2. Step 2 uses this threshold
to get the primary set of inliers, which are finally used by Step 3 to refine the pose. The red dots in the plots
represent outliers and the rest of the points are inliers.

gi =

{
fth if fi > fth,
−fth if fi < −fth,
fi otherwise

Figure 4: Limiting the residual errors, fi. The
residual errors above fth and below −fth, are limited
to the respective thresholds

which are close to the inlier threshold are considered
as inliers. To control the impact of any single feature
point to the pose optimization, its contribution in the
form of residual error fi is limited as defined in Fig.
4. The residual errors fi are replaced by gi, before ap-
plying weighting. This increases the robustness of pose
estimation to false matches. fth is the upper limit of
residual error that is allowed and is set upon studying
the distribution of all residual errors experimentally.
The weights are assigned to matches as discussed next.

Depth Based Weighting : The depth of a feature is
computed using stereo camera baseline [13]. The uncer-
tainty in depth increases with the depth of the feature.
ORB-SLAM2 [16] indicated that far points contribute
weakly to scale and translation information. Hence, it
neglects all far features (depth >18m) for pose opti-
mization, unless the close-feature count is significantly
low. However, directly removing far features disrupts
the uniformity of feature distribution and incurs more
drift as a result. Unlike SLAM, it is a major concern
in VO where there is no way to correct the drifts. In
the proposed pose optimization, we exploit depth in-
formation to provide an indication of the inaccuracies
in features. However, instead of applying hard thresh-
olding and removing far features [16], we apply weights
to features based on its depth (din) such that the far-
ther features are associated with smaller weights on

logarithmic scale (Eq. 3). To compensate for the inad-
equate calibration [14], the features (uin, v

i
n) which are

near the image-center ((cu, cv) are given higher weights
as Viso2 [13]. We define the combined weights indepen-
dently along two image axes (wx

i , w
y
i ) as:

wx
i =

1

ln(din) · (
∣∣∣ui

n−cu
cu

∣∣∣ + 0.05)

wy
i =

1

ln(din) · (
∣∣∣ vi

n−cv
cv

∣∣∣ + 0.05)
(3)

3 Experiments and Discussions

We used popular outdoor dataset KITTI [12], which
is highly challenging due to varying motion and diverse
scenes. It has low frame rate (10fps). Larger frame
rates would lead to smoother inter-frame motion that
will improve pose estimation accuracy in our method.
The proposed VO is built on LibViso2. Only 1700 ORB
features are extracted per frame, minimum-inlier-ratio
r is 0.3 and fth is set to 10 based on KITTI. The eval-
uation [2] gives average relative % translation and ro-
tation errors. Runtime of only the open-source2 sys-
tems are evaluated on same platform averaged over 10
runs. The testing statistics are extracted from KITTI
website [12] by submitting estimated poses. The ex-
isting VO and SLAM with high-accuracy or lowest-
runtime have been selected for comparison. SOFT VO
[6] has the highest accuracy in the KITTI site[12] , but
its runtime (0.1 secs) does not meet real-time require-
ments. Viso2 [13], which is one of the fastest VO meth-
ods is also compared. Among all the SLAM systems,
ORB-SLAM2 [16] is the most accurate and fastest and
is therefore chosen. In addition, as SLAM has an extra
advantage of using loop-closure and BA to correct the
drifts, the VO version of ORB-SLAM2 i.e. ORB-VO is
also included in evaluations on training dataset.

2 Open Sources ORB-SLAM2, Viso2 and ORB-VO
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Figure 5: Plot compares the estimated trajectories
with groundtruth. A challenging KITTI sequence 01
is shown.

Ablation Studies: To investigate the effect of
each of the proposed strategy, detailed ablation study
is conducted on training sequences. The experiments
were performed on three configurations (B,C,D) and
compared with the full proposed VO (A) (Table 1).

1.Efficient Feature Correspondence Setup
(EFCS): In configuration B, the EFCS functionality
is excluded and replaced with the basic feature extrac-
tion in Viso2, while other functionality of the proposed
VO system are retained. Table 1 shows that in the ab-
sence of the proposed EFCS, the pose errors increased
notably from 0.96% (A) to 2.19% (D). The proposed
EFCS incurs only slightly longer runtime.

2.Proposed Outlier Removal (POR): Unlike the
conventional RANSAC which requires 200 iterations
to obtain maximum set of inliers, the proposed POR
computes the inlier set using the motion-prior in a sin-
gle pass. This leads to significant reduction in com-
putation (Table 1), i.e. runtime reduced from 53 ms
(C) to 44 ms (A). In addition, the proposed scheme
uses adaptive thresholding for outlier removal that is
independent of the scene, which resulted in improved
translation error i.e. from 1.00% (C) to 0.96% (A).

3.Robust Pose Optimization (RPO): RPO in-
cludes calculation of weights and kernel function val-
ues for all the inliers. This increases the computations
marginally but contribute to significant reduction in
pose errors. As a result of employing RPO, translation
errors reduces from 1.21% to 0.96% and rotation errors
reduces from 0.0044 deg/m to 0.0030 deg/m.

The ablation studies show that each of the proposed
EFCS, POR and RPO contribute to increasing pose es-
timation accuracy. Although EFCS and RPO requires
slightly higher computation time, the overall runtime
of the proposed VO system is significantly reduced due
to the computationally efficient POR method.

Accuracy Evaluation: Similar to other reported
works, we first perform accuracy evaluations on the
training dataset2. The comparison of our proposed
VO with ORB-SLAM2, Viso2 and ORB-VO on train-

Table 1: Ablation studies of the proposed VO on train-
ing dataset.

Method
Trans.
error (%)

Rot. error
(deg/m)

Runtime (secs)
on 1-core @3.5GHz

A. Proposed VO 0.96 0.0030 0.044
B. Without EFCS 2.19 0.0150 0.036
C. Without POR 1.00 0.0037 0.053
D. Without RPO 1.21 0.0044 0.041

ing dataset is qualitatively shown in Fig. 5, using one
representative sequence. The proposed VO traces the
groundtruth remarkably well, because it utilizes better-
distributed features, a mix of close and far features,
along with efficient outlier removal. In few sequences
containing loops, ORB-SLAM2 showed slightly better
accuracy than proposed VO; because it takes advan-
tage of BA and loop closure. ORB-VO performs worse,
as it does not rely on BA and loop closure. Based on
the results of ORB-VO and ORB-SLAM2, we expect
that the proposed VO will achieve significant increase
in pose accuracy if it is integrated with BA and loop
closure. Viso2 deviates significantly; being unable to
handle outliers effectively. As given in Table 2, on
training dataset our proposed method achieves 0.96%
translation errors which are close to ORB-SLAM2
(0.81%). The proposed VO significantly outperforms
ORB-VO (3.41%) and Viso2 (2.64%). It is noteworthy
that the rotation errors of proposed VO (0.0030deg/m)
is lower than ORB-SLAM2 (0.0039deg/m). In addi-
tion, our proposed method (1.30%, 0.50% & 1.02%)
shows improvement over ORB-SLAM2 (1.39%, 0.51%
&1.05%) on trajectories 01, 06 and 08 respectively. The
testing poses3 of the proposed VO were also submit-
ted for online evaluation and results are shown in Table
2. Average translation error of 1.24% was reported for
the proposed VO, which is close to the ORB-SLAM2
(1.15%). These results clearly demonstrate that even
without using BA and global pose optimization, our
method can perform comparable to the state-of-the-art
systems in terms of pose accuracy.

Runtime evaluation: The average runtime of
ORB-SLAM2, ORB-VO, Viso2 and proposed VO is
shown in Table 3. For comparisons, we obtained the
runtime of ORB-SLAM2 using both single and two
cores for pose estimation. It is worth mentioning that
ORB-SLAM2 uses 2 more cores for back-end (BA and
loop closure), where back-end runtime is not included
in our comparisons. It is evident that the average run-
time of the proposed VO system (0.044 secs) is 50%
lower than the ORB-SLAM2 (0.088 secs) using single
core for pose estimation. If we compare the timings
on two cores, where feature extraction of left and right
frames is performed in two parallel threads, our method
achieves 0.034 secs (29 fps) compared to 0.065 secs for

3 The testing results are extracted from KITTI website [2] and those
results available online are discussed (ORB-SLAM2, Viso2, SOFT).



Table 2: Accuracy Evaluation on KITTI training and
testing datasets.

Method Training dataset Testing dataset

Trans.
error (%)

Rot. error
(deg/m)

Trans.
error (%)

Rot. error
(deg/m)

Viso2 2.64 0.0201 2.44 0.0114
SOFT NA** NA** 0.88 0.0022
ORB-VO 3.41 0.0266 NA** NA**
ORB-SLAM2 0.81 0.0039 1.15 0.0027
Proposed VO 0.96 0.0030 1.24 0.0027

**NA denotes that results in that configuration are not made
available to us. For training Viso2, ORB-SLAM2 and ORB-VO,
and for testing Viso2, ORB-SLAM2 and SOFT are available.

Table 3: Runtime evaluation on KITTI datasets.

Method Runtime (secs) Platform

Viso2 0.050 1 core @3.5GHz
SOFT 0.100 2 cores @2.5GHz

ORB-VO
0.065
0.087

2 core @3.5GHz
1 core @3.5GHz

ORB-SLAM2
0.065
0.088

2 cores @3.5GHz
1 core @3.5GHz

Proposed VO
0.034
0.044

2 cores @3.5GHz
1 core @3.5GHz

ORB-SLAM2, i.e. our method achieves 47% lower run-
time. This improvement is made possible due to the
proposed computationally efficient methods in feature
correspondence setup and adaptive outlier removal.

4 Conclusions

In this work, we proposed accurate and efficient fea-
ture correspondences setup for VO, which results in
a lesser number of features (but of high quality) for
pose estimation. The accuracy of the correspondences
is enhanced by using the proposed similarity metric
which takes into account both pixel distance and de-
scriptor distance. In order to rapidly remove the out-
liers, an adaptive and deterministic scheme has been
proposed that relies on the estimated pose of the pre-
vious frame. The proposed outlier removal scheme
is non-iterative, and hence it can be accomplished in
significantly lower computation time compared to its
counterparts, e.g. RANSAC. We also propose strate-
gies to increase the robustness of pose optimization by
introducing a depth-weighted Gauss-Newton optimiza-
tion and controlled residual approach. The timing and
accuracy results show that the proposed VO achieves
better trade-off than existing state-of-the-art systems.
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