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Abstract

We propose a novel hybrid human 3D body pose es-
timation method that uses RGBD input. The method
relies on a deep neural network to get an initial 2D
body pose. Using depth information from the sensor,
a set of 2D landmarks on the body are transformed
in 3D. Then, a multiple hypothesis tracker uses the
obtained 2D and 3D body landmarks to estimate the
3D body pose. In order to safeguard from observation
errors, each human pose hypothesis considered by the
tracker is constructed using a gradient descent opti-
mization scheme that is applied to a subset of the body
landmarks. Landmark selection is driven by a set of
geometric constraints and temporal continuity criteria.
The resulting 3D poses are evaluated by an objective
function that calculates densely the discrepancy between
the 3D structure of the rendered 3D human body model
and the actual depth observed by the sensor. The quan-
titative experiments show the advantages of the pro-
posed method over a baseline that directly uses all land-
mark observations for the optimization, as well as over
other recent 3D human pose estimation approaches.

1 Introduction

Vision-based human motion capture is an essential
problem with many applications. Markerless unobtru-
sive methods have received a lot of attention from the
computer vision community and considerable progress
has already been achieved. However, accurate, fast and
robust 3D human pose estimation in the wild is still an
open problem.

1.1 Related Work

Human body pose estimation techniques may be
classified into three broad classes, the bottom-up dis-
criminative methods, the top-down generative methods
and the hybrid ones. Generative methods can be very
accurate, provide physically plausible solutions and do
not require training. However, typically, they are com-
putationally demanding, require initialization and can
suffer from drift and track loss. Discriminative meth-
ods perform single frame pose estimation and do not
require initialization. On the other hand, they rely on
big collections of annotated training data and their so-
lution is not always physically plausible. Hybrid meth-

Figure 1. At each frame, the proposed method
takes as input the previous pose hypotheses Ht−1,
the 2D landmarks (green discs) extracted from
the RGB image and the corresponding 3D land-
marks (blue discs) calculated using depth. It then
generates a set of hypotheses Ht for the current
frame. For each hypothesis a different subset of
the detected landmarks is used (red discs). The
best hypothesis is selected by densely measuring
its discrepancy from the observed depth.

ods integrate elements from both worlds in an effort to
combine their merits.

Most recent human pose estimation methods rely
on 2D keypoints extracted from RGB data [1, 2]. The
accuracy of these methods is high, mainly due to the
availability of large annotated datasets [3,4]. By build-
ing on the 2D keypoints and relying on RGB informa-
tion only, many recent approaches perform either 2D
pose estimation [1] or 3D pose estimation [5–9]. To
tackle the difficulties of lifting 2D keypoints to 3D,
some methods directly regress 3D keypoints or volu-
metric representations [10]. Recent approaches proceed
further to estimate both the pose and the shape of the
human body [11–14]. In [15], they establish dense cor-
respondences between images and the 3D human body
model. The approaches that rely on RGB information
only, either produce a scale normalized output or rely
on prior assumptions to determine the models’ scale. In
both cases, their applicability in a number of domains
(e.g., robotics) is limited.

To recover the full 3D human body pose in a
real world coordinate frame, most approaches rely on
RGBD sensors. The work in [16] that relies on ran-
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dom forest regression defined the baseline for these ap-
proaches. In [17,18] a generative approach is presented
that relies on a single RGBD sensor and provides the
full or partial body pose in real time. In [19] a deep
learning approach using the depth map is presented.
Instead of the depth map, the work in [20] uses a vol-
umetric representation and a 3D CNN to obtain the
hand or human pose in real-time. In [21] they embed
local regions into a viewpoint invariant feature space to
handle noise and occlusion. In [22] they propose a CNN
approach that uses both color and depth information.

Recent body pose estimation methods use several
strategies to take into account the geometric structure
of the human body. Several methods describe the pose
by a set of keypoints so that its structure is learnt im-
plicitly during training [10, 20–22]. Other approaches
extract the pose as a linear combination of prototype
poses [19,23]. To enforce the accurate geometric struc-
ture several approaches employ 3D human body mod-
els. The pose parameters of these models are either
inferred using bottom-up regression only [11,24] or es-
timated using a combination of bottom-up regression
of body landmarks (e.g. 2D joint locations) and top
down optimization [5, 14, 25]. In this work we employ
a 3D model and we use the latter hybrid strategy to
estimate its pose.

Several human pose estimation approaches focus
specifically on handling occlusions. One direction is
to treat visibility as a binary mask and exploit scene
context to estimate it [26]. Other methods use tem-
plates for occluded versions of each body part [27] or
introduce occlusion priors [28].

1.2 Our Approach

In this paper we propose a novel hybrid human
body pose estimation method using RGBD input. The
method relies on the OpenPose deep net architec-
ture [1] to get an initial 2D pose. Using depth infor-
mation from the sensor a set of 2D landmarks on the
body are transformed in 3D. However, these estima-
tions can be erroneous due to sensor errors, 2D joints
miss-locations as well as because of (self) occlusions.
Figure 2 shows a characteristic example of such errors.
Therefore, to estimate the 3D human pose we employ
a Multiple Hypothesis Tracker (MHT). Each generated
hypothesis is defined by considering a subset of the
available body landmarks. This way, it becomes possi-
ble to consider hypotheses that are not affected by the
noisy measurements. The subsets are obtained by ran-
dom weighted sampling. The weight of each landmark
is calculated using a set of geometric constraints and
temporal continuity criteria. Given a landmarks sub-
set, we estimate the pose of a parametric 3D human
body model by a gradient-based optimization scheme.
Finally, the resulting 3D poses are evaluated by an ob-
jective function that densely calculates the discrepancy
between the model and the observed depth.

Figure 2. An RGBD camera at C observes side-
ways the left shoulder M of a human at image
coordinates o. The perceived depth in the direc-
tion of o corresponds to O. Therefore, lifting a
2D keypoint o to 3D based on depth input will
introduce outlying measurements.

Our contributions: Our main contributions are (a) a
novel 3D human body tracking method based on 2D
keypoint detections and RGBD data, (b) a multiple hy-
potheses tracking strategy to deal with occlusions, 3D
sensor noise, and 2D detection errors and (c) geomet-
ric and temporal continuity rules to filter the keypoints
that are fed to the optimizer for each hypothesis.

The method has been thoroughly tested quantita-
tively and qualitatively. The results demonstrate that
the proposed method that filters keypoints using tem-
poral and geometric constraints performs better than
the baseline approach that uses all of them. Moreover,
the proposed approach compares favorably to relevant
state of the art approaches [16,17].

2 Method Description

2.1 Human Body Model

The employed human body model has 25 degrees
of freedom (DOFs) and K = 43 parameters since we
adopt the quaternion representation for 3D rotations.
The global translation and rotation of the body is en-
coded by 7 parameters (3 for the 3D position and 4
for the quaternion). Each of the 9 joints are modeled
using quaternions to represent the related 3D rotation.
In this version of the model we do not enforce joint lim-
its. We identify keypoints on the model skeleton that
correspond to the locations of the joints that the 2D
joint detector estimates.

2.2 3D Pose Estimation

For the purpose of 2D joint estimation we use the
OpenPose method [1] which achieves state of the art
results in difficult, real life datasets. This ability to
generalize and produce good 2D keypoint detections
from arbitrary images is key to the goals of this work.

Using the depth image and given the 2D estimations
of the joints, we retrieve 3D landmark positions. Sub-
sequently, we fit a 3D human body model to these 2D
and 3D landmark positions. Under this general frame-
work we implement two approaches:



• LVM: this is the baseline method where all the 2D
keypoints are used to recover the 3D pose using the
Levenberg-Marquardt optimization algorithm.

• MHT: this is the proposed optimization method
based on a multiple hypothesis tracker that main-
tains and propagates a set of hypotheses for the 3D
pose. Each hypothesis relies on a different subset
of the observations (2D/3D landmark positions).

Optimization: Given a body pose x defined by the K
parameters of the human body model and its forward
kinematics function, we compute the 3D positions of
the joint keypoints Mi = (Xi, Yi, Zi), i ∈ [1, I] in the
camera coordinate frame, and their projections mi =
(ui, vi), i ∈ [1, I], I = 18, on the image plane.

Let oi = (ui, vi), i ∈ [1, I], represent the detected
2D joints and fi be a binary flag taking the value
of 1 if the keypoint is detected and 0 otherwise. Let
Oi = (Xi, Yi, Zi), i ∈ [1, I] be the 3D points associated
with oi. Oi are obtained for the detected keypoints for
which there exists valid depth information. For these
keypoints a binary flag Fi is set to 1; for the rest of the
keypoints, Fi is set to 0. For a given pose, the total
discrepancy S(x, O, o) between the observed and the
model joints is given by:

S(x, O, o) =

I∑
i=1

Fi‖Mi−Oi‖+(fi−Fi)‖mi−oi‖. (1)

The 3D pose x∗ that is most compatible with the avail-
able observations can be estimated by minimizing the
objective function of Eq.(1):

x∗ = arg min
x
{S(x, O, o)}. (2)

This is achieved using the Levenberg-Marquardt
(LevMar) optimizer that minimizes this objective func-
tion after the automatic differentiation of the resid-
uals. In our implementation, optimization has been
performed by employing the Ceres Solver [29].

Multiple Hypothesis Tracker (MHT): MHT
maintains a set of hypotheses N that are propagated
through LevMar optimization using a subset of the ob-
served keypoints. By relying on a subset of the key-
points, it is possible for the method to handle inaccu-
rate 2D/3D estimations (see for example the situation
in Fig. 2). The observation subset for each hypothesis
is drawn by weighted random sampling. The 3D and
2D landmark selection weights Wi and wi, respectively,
are constructed using the following criteria:
Randomly: a ratio R, and r of selected 3D and 2D key-
points, respectively, are excluded from the optimiza-
tion, so: W r

i = 1−R, wr
i = 1− r.

Model geometry: Detected 3D keypoints at step t imply
body part locations. The geometry selection probabil-
ity is calculated by measuring the discrepancy between

the observed depth in these locations and the known
model geometry: W g

i = exp(−dg/(2 ∗ σ2
g)). dg ∈ [0, 1]

is a normalized distance that takes into account two ge-
ometric constraints: the length between the observed
keypoint i and its parent on the skeleton, and the 3D
geometry of the line that connects these two keypoints.
dg is 0 when both length and line geometry comply with
their respective 3D model values and increases when
there is a discrepancy. For the 2D keypoints the selec-
tion probability is wg

i = l∗W g
i +(1− l) with l = 0.33 so

that on average for 1 out of 3 excluded 3D landmarks
the corresponding 2D landmark is also excluded.
Temporal continuity: Detected 3D keypoints at step
t are expected to be near their previous location:
Wh

i = exp(−dh/(2 ∗ σ2
h)), where dh = min(||Oi,t −

Mh
i,t−1||, dhmax)/dhmax is the truncated normalized

distance between the current detected landmark posi-
tion and the corresponding model landmarks position
at t−1. σh is a standard deviation parameter. For the
2D keypoints: wh

i = l ∗Wh
i + (1− l) with l = 0.33.

When multiple criteria are combined, the selection like-
lihood is given by: Wi = min{W r

i ,W
g
i ,W

h
i }, wi =

min{wr
i , w

g
i , w

h
i }. For each hypothesis the number of

selected 3D and 2D landmarks are S = b
∑

iWic and
s = b

∑
i wic, respectively.

Hypothesis Evaluation: Each propagated hypothe-
sis is evaluated using the depth observation likelihood.
This measures the degree of matching between a ren-
dered model pose and the depth observations as in [30].
The input of the method is an RGBD image and a
model pose. A pre-processing step uses the estimated
model position in the previous frame as reference and
keeps only the observations that are within a prede-
fined range around it. The observation consists of the
resulting 2D depth and foreground maps z = {zd, zfg}.
To calculate the likelihood for a hypothesis we perform
rendering given the camera calibration. The result of
rendering is a 2D depth map and the corresponding
foreground map {rd(x), rfg(x)}. Let Pi be the set of
pixels that are labelled as foreground in both the obser-
vation and the model defined as Pi = {zfg ∧ rfg} and
Pu be the set of pixels that are labeled as foreground in
either the model or the observation Pu = {zfg ∨ rfg}.
We denote as λ =| Pi | / | Pu | the ratio of the number
of elements of these two sets. The following function
∆(z,x) is then used to evaluate the discrepancy be-
tween a hypothesis x and the observation z:

∆(z,x) = λ

∑
p∈Pi

min(|zd,p − rd,p|, dM )

dM | Pi |
+ (1− λ) .

(3)

This ranges from 0 for a perfect match to 1 for a mis-
match. At each frame the hypothesis with the mini-
mum ∆(z,x) is selected as the solution.



3 Experiments

We evaluated the following methods:

• OpenNI body pose estimation [16].

• FHBT Generative tracker [17]. This method re-
ports results only for a subset of joints using a
confidence metric.

• LVM Baseline method that performs Levenberg-
Marquardt optimization over all detected joints.

• MHTr Proposed MHT tracker with randomly ex-
cluded keypoints.

• MHTg Proposed MHT tracker with randomly ex-
cluded keypoints plus geometric constraints.

• MHTh Proposed MHT tracker with randomly ex-
cluded keypoints plus geometric constraints plus
temporal continuity (history) constraints.

Datasets: The proposed approach is evaluated both
qualitatively and quantitatively. For the evaluation we
used a subset of the Berkeley Multimodal Human Ac-
tion Database (MHAD) [31]. This dataset features 12
human subjects of considerable variability with respect
to age, size and body types. The subjects perform 11
different activities. As input we used the RGBD stream
of one kinect sensor. The tracking results are compared
against the ground truth obtained using a motion cap-
ture system.

Evaluation Metrics: To quantify the accuracy in
body pose estimation we use two metrics. The first
metric, D, is the average distance over a sequence of the
estimated 3D points (joints) from their ground truth
positions. The second metric, Cj(d), is the joint suc-
cess rate i.e. the percentage of joints in a sequence for
which D is lower than d.

3.1 Quantitative Evaluation

Observation Subset Selection: The three strate-
gies for selecting the observations subset that is used
for each hypothesis have been evaluated and the re-
sults are presented in Table 1, Table 2 and Fig. 3. The
best results are achieved with MHTh (both geometric
and temporal continuity constraints) considers 5 hy-
potheses and no further random exclusion of landmarks
(N = 5, r = 0, R = 0). In this case, the mean distance
error is 66 mm which is 26% lower than the baseline
LVM. As illustrated in the plots of Fig. 3, MHTh has
superior success ratio for all threshold values compared
to the other MHT variants and the LVM baseline.

In terms of average error, MHTh only slightly out-
performs OpenNI but its performance is much more
stable as the error standard deviation is significantly
lower. MHTg (N = 5, r = 0.05, R = 0.15) which uses

Table 1. D(mm) for each exclusion ratios pair.

r R MHTr MHTg MHTh

0.0 0.0 N/A 85 66
0.0 0.05 88 82 68
0.0 0.10 87 83 70
0.0 0.15 86 82 75
0.05 0.10 87 83 70
0.05 0.15 86 80 74
0.05 0.30 88 85 83

Table 2. Mean error and standard deviation for
the best performing variant of each evaluated
method. ∗FHBT∗ reports results only for a sub-
set of joints for wwhich the method is mostly con-
fident, so performance is not directly comparable.

Method Mean D(mm) std D(mm)
LVM 89 38
MHTr 86 22
MHTg 80 29
MHTh 66 22
OpenNI 68 66
∗FHBT∗ 58 41

only geometric constraints for landmarks selection, also
surpasses the baseline in all metrics. MHTr (N = 20,
r = 0.05, R = 0.15) only slightly surpasses the LVM
baseline even with N = 20, showing that the use of
geometric or temporal continuity information is key to
the performance of MHT methods.

Table 1 shows the mean distance error for differ-
ent random exclusion ratios. The values that perform
best for the MHTr and MHTg methods are r = 0.05
and R = 0.15 while MHTh performs best when no
random landmarks exclusion takes place since the ge-
ometric and temporal continuity criteria guarantee a
good landmark subset selection.

The number of hypotheses influences both the track-
ing accuracy and the computational cost of the MHT
methods. Since for the MHTr method the keypoint
exclusion is performed randomly, the error drops as
N increases up to 20. Adding more hypotheses does
not improve the performance of MHTr. MHTg and
MHTh rely mostly on geometric and temporal conti-
nuity constraints to select keypoints, so their perfor-
mance is superior to MHTr even with very few hy-
potheses (N = 5) and does not change considerably
for higher values of N .

Occlusions: We tested the behavior of all the meth-
ods in the presence of occlusions by randomly removing
rectangular areas from the RGBD stream (see Fig. 4).
The results for various occlusion levels are shown in
Fig. 5. All methods are negatively influenced by the
occlusions. However, the proposed approaches perform
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Figure 3. Cj(d) for different threshold values.

Table 3. Average execution times / frame, fps.
Method N Exec. Times (ms) fps
LVM 1 17 60
MHTr 20 262 4
MHTg 5 69 15
MHTh 5 69 15

better compared to the LVM baseline, which trans-
lates to higher accuracy on high occlusion levels.

Computational performance: The execution times
for the methods are shown in Table 3. The current
implementation is serial, so the computational cost in-
creases linearly with the number of hypotheses. Since
the computations for each hypothesis are independent,
significant performance speedups are expected from
their parallelization.

3.2 Qualitative Evaluation

The benefits of the proposed method are highlighted
in the example frames of Fig. 6. The figure shows
frames from the MHAD dataset. The baseline LVM
method is compared to the proposed MHTh. The
baseline method’s detections are not accurate in many
of the depicted frames mainly due to errors in the
estimated joint 3D locations. The proposed MHTh

method is affected much less by such inaccuracies.
More results are included in the supplementary ma-
terial accompanying the paper:
https://youtu.be/jvLzGpnniWc.

4 Conclusions

We presented a hybrid 3D body pose estimation
method using RGBD input. The method uses a CNN
to detect 2D human body landmarks and uplifts them
to 3D by using the depth channel of the sensor input.
To deal with noise, a robust multiple hypothesis tracker
is used to evaluate and propagate pose hypotheses gen-
erated by subsets of the landmarks. The subsets are ob-
tained by random weighted sampling, with the weight

Figure 4. Example frames from the artificially oc-
cluded MHAD dataset. Each column corresponds
to a different occlusion level with increasing oc-
clusions from left to right.
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Figure 5. D(mm) for different occlusion levels.

of each landmark being calculated using a set of geo-
metric and temporal continuity criteria. The pose of
a parametric 3D human body model is then estimated
by a gradient based optimization scheme. The experi-
ments show that our method significantly outperforms
(in terms of accuracy) the baseline approach where all
the keypoints are used in the optimization. The differ-
ence is even more significant when the sequence con-
tains considerable occlusions. Future research direc-
tions include the incorporation of more elaborate cri-
teria to select the relevant 2D and 3D landmarks and
the simultaneous estimation of the body shape.
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