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Abstract

This paper describes a method we propose that ob-
tains event timing at sub-frame level, which is more
precise than frame level, on the basis of temporal super-
resolution for sports videos. Since athletes move very
quickly in sports situations the required time resolution
for event detection for sports motion analysis is quite
fine grained. Thus, we need to detect events that have
not been recorded even if means having to check events
at every frame. The proposed method is able to gener-
ate quasi-high frame rate videos, but does so with diffi-
culty because the videos have too high a degree of free-
dom. We focus on the fact that repeated motions occur
in many sports, and the projection of low-dimensional
feature space is obtained on the basis of these repeated
motions. Interpolations in the low-dimensional feature
space make it easy to provide quasi-high frame rate
videos that enable event detection at sub-frame level.
Experiment results verified that our method detects ball
release timing from 30 fps video with mean error of
less than 0.02 seconds. Moreover, subjective evalua-
tion experiments showed that the proposed method has
accuracy applicable to the sports training VR system
we developed.

1 Introduction

Recently, sports support methods using IT technol-
ogy have become widely used [1]. The methods are
diverse, involving factors such as tracking the sports
players engage in [2], providing metadata to sports
videos [3], and detecting events [4]. A specific example
is the real-time tracking technology that the Hawk-eye
system [5] provides, which has been officially adopted
as a way to help tennis and soccer players make deci-
sions.
With this background in mind, we have been do-

ing research and development work aiming to support
sports training using IT technology. We have proposed
a method of dividing motion into multiple phases to
evaluate proficiency of motion [12] and a method of
presenting the motion image and the data acquired
by the sensor in the VR space synchronously [11].
Through these studies, it has become clear that it is
important to accurately detect instantaneous timing
at which a specific event (impact of golf swing, release
of pitch, etc.) occurs when analyzing and presenting
sports motions. In this study, we suggest a framework
that detects the timing of event that often occur in
sports video. One point requires particular attention
here. If the video frame rate is very high (e.g., 120 fps)
and the event timing is recorded reliably, the timing de-
tection is very easy. However, at the present time the

video images generally used are 30 fps (in recent years,
60 fps has also become widely used), and it frequently
happens that the actual moment of the ball’s release is
not recorded into the video data (Fig.1). Our research
addresses this point. It can be interpreted as the event
timing detection at the sub-frame level, which is not
actually photographed because of the frame rate rela-
tionship.

Fig. 1. Example of the difficulty of event timing
detection in sports video. The same sports mo-
tion is recorded, but depending on the frame rate
of the camera, the event to be detected may not
be recorded.

To address this need, we have developed a new
framework for detecting events with sub-frame accu-
racy by using a quasi-high frame rate. It is generally
very difficult to create high frame rate (30 or more
fps) videos with shots taken by a normal video camera.
This problem is called temporal super-resolution and
is one of the important issues in the field of image pro-
cessing. For example, there is a method that captures
the same scene with multiple cameras and performs
temporal-spatial super-resolution by using a spatial
alignment method [6]. Another method regards gait
as quasi-periodic data series in performing temporal
super-resolution [7]. In these methods, however, there
are certain restrictions in capturing scenes. Concretely
speaking, it is necessary to photograph the same scene
with a multiple cameras, or it is necessary to assume
that the target image is a quasi-periodic data series.
In sports, there are many scenes where the same mo-
tion is repeated multiple times. Therefore, the method
we propose uses a low-dimensional model to achieve
quasi-high frame rate generation. Low dimension mo-
tion models can be made by mapping multiple videos
of the same motion to low-dimensional space, which
makes it possible to generate a quasi-high frame rate
sequence in the motion model.
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2 Proposed method

The new framework we have developed detects
events from video sequences. As mentioned above,
it is generally very difficult to create high frame rate
(30 or more fps) videos with shots taken by a nor-
mal video camera. The method we propose enables
low-dimensional space motion models to be taught. It
does so by focusing on characteristics in the sports
field, in which there are many situations where similar
motions are repeatedly performed, and also by map-
ping multiple motion videos of the same scene in a low
dimensional space. In low dimensional spaces, frame
rates can be easily increased by using techniques such
as linear interpolation and spline interpolation. Event
detection is performed on a quasi-high frame rate im-
age created in a low dimensional space to achieve event
detection at a level higher than the frame rate of the
original video, i.e., sub-frame precision
The proposed method performs the following two

steps. First, it generates quasi-high frames by mapping
video sequences to a low dimensional space. Next, it
detects events in the quasi-high frame rate videos. We
will describe these steps in the following sub-sections.

2.1 Quasi-high frame generation in low dimen-
sional space

In this method, first, the video (Y ) to be detected
is input, then the time series data group is mapped
to the low dimensional space and converted into a
low dimensional variable X. Then, we create a quasi-

high frame low-dimensional variable X
˜high by making

a high frame rate in the low dimensional space. This
concept is diagrammed in Fig. 2. At this time, select-
ing a method of maintaining time series information
and mapping it to low dimensions makes it possible to
easily achieve a quasi-high frame rate in a low dimen-
sional space.

2.1.1 Mapping of low dimensional space

Our method uses the Gaussian Process Dynamical
Model (GPDM)[8], which is a method capable of map-
ping to a low-dimensional space while keeping time se-
ries information. GPDM is a method that keeps the
information of the time series data and can map it
nonlinearly and stochastically to the low dimensional
space. It is also used for human motion estimation [9].
It treats latent space dynamics with primary Markov
chains, and compresses high dimensional time series
y(t) in t at moments (D dimensional data) to latent
variable x(t). The following expressions define this re-
lationship.

y(t) = g(x(t);B) + ηy(t) (1)

x(t) = f(x(t− 1);A) + ηx(t) (2)

In equation (2), g means the projection from the low
dimensional latent space (X) to the high dimensional
data space (Y), and A is a model parameter that de-
fines the mapping function. In equation (1), f is a func-
tion that defines the dynamics in the low dimensional
latent space and B is a model parameter that defines
the dynamics function. The terms ηx(t), ηy(t) in the
equations are noise terms. These model parameters

learn multiple inputs of the same kind of series data,
thus enabling unknown sequence data to be mapped
to a low-dimensional space. For example, as shown in
Fig. 3, when mapping to a three-dimensional low di-
mensional space, the coordinate values at time n are
(x(n), y(n), z(n)).

2.1.2 Quasi-high frame generation

Fig. 2. Conceptual diagram of quasi-high frame
generation in low dimensional space. Y is high
dimensional data, i.e., videos. X is a mapped

low dimensional variable. X
˜high is a quasi-high

framed variable.

Fig. 3. Quasi-high frame generation in low dimen-
sional space.

Next, it generates high frame rate data( X
˜high) in

the low dimensional space on the space. Here, since
the data string is mapped so as to change smoothly in
the space, a pseudo high frame rate can be achieved by
performing simple linear interpolation. For example, if
it is necessary to increase the frame rate by a factor of
K, (x(n+1), y(n+1), andz(n+1)) from the coordinates
(x(n), y(N + 1)) are divided into K, and the dividing
point is set as a new coordinate value of 1 : KN frame.
A conceptual diagram of this example is shown in Fig.
3. In this figure, the frame rate is increased fourfold.

2.2 Event timing detection in low dimensional
space

On the basis of the coordinate value and the event
time in the low dimensional space of the previously
learned model, the probability P of occurrence of the
target event in the low dimensional coordinate value of
the test data is calculated. First, the distances between
the coordinate value of the event timing in the low-
dimensional space learned beforehand and each frame
of the pseudo high frame rate converted test data are
calculated. Then, with the hypothesis that there is
a high possibility that the event timing exists in the
frame as the distance becomes closer, the probability
P (k) at which the target event occurs at the time k
is defined by the following expression. This concept is
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depicted in Fig. 4.

P (k) = exp(−
N∑
n

/(2σ2)d2(k)) (3)

When learning is performed with multiple image se-
quences, the same calculation can be performed by
accumulating the distances of all the image columns.
Here, n represents the index of learning data and N
represents the number of learning data elements used
for calculation. Using a method of finding the time k
that takes the maximum value and a method of finding
the weighted average value makes it possible to deter-
mine the event timing based on equation (3). We use
two methods when accumulating distances of multiple
learning data. One is a method using all data used
for learning in a low dimensional space (timing detec-
tion method (a)). The other is a method using partial
data that is filtered by correlations between test data
from learning data (timing detection method (b)). In
method (b), only N ′ selected by the threshold value is
used as learning data used for calculation in equation
(3).

Fig. 4. Event timing detection in low dimen-
sional space. 縲?First, the distance between the
coordinate value of the event timing in the low-
dimensional space learned beforehand and each
frame of the pseudo high frame rate converted
test data are calculated. Then, with the hypoth-
esis that there is a high possibility that the event
timing exists in the frame as the distance be-
comes closer, the probability P (k) at which the
target event occurs at the time k is defined.

3 Experiments

In order to demonstrate the effectiveness of the pro-
posed method, we conducted an experiment to detect
the timing of the ball release using baseball pitcher
videos.

3.1 Preparation

In carrying out the experiment, Motion History Im-
age (MHI) [10] was calculated from each image at each
time and used as an image feature sequence. Further,
before mapping to the low dimensional space, the pe-
ripheral time at which the event to be detected occurs
from the image feature sequence was taken out as the
event region. When learning a low-dimensional space,
10 frames before and after the frame closest to the time

with the event tag were taken out and set as an event
area, and a low-dimensional space model was created
by mapping each of the pitcher videos for each pitcher.
This enabled us to make pseudo high frame rates 4
times higher than those in low dimensional space.
The event region in the test data was extracted by

template matching. The template matching process-
ing was performed in the following manner. First, a
template close to the event to be detected (Fig. 5 (1))
was detected. Next, the templates were compared in
the time direction and the spatial direction of the video
that shows the event whose detection is desired (Fig.
5 (2)). In addition, we determined the best matching
frame and position from the comparison results (Fig. 5
(3)). This is the coordinate value of the central part of
the event candidate region for each frame. On the ba-
sis of the evaluation value for each frame, we obtained
the frame number N∗ as the event detection result.
Finally, several frames before and after the frame de-
termined as described in (3) were collectively taken as
the event area (Fig.5 (4)).

Fig. 5. Event volume detection with template
matching.

3.2 Test of detection accuracy using baseball
pitching data

We conducted experiments to evaluate the timing at
which the release of the ball was detected, using base-
ball pitching videos for a game involving eight pitch-
ers. The videos used were taken from the back net,
and the viewpoint was fixed for the most part. Us-
ing the videos taken for each of the eight pitchers, we
achieved event detection and quasi-high frame rate in
low dimensional space. The total data used comprised
95 videos. And it was used seven balls for each pitcher
to learn low-dimensional space. The number of images
used for event detection varied from 3 to 7, depending
on the pitcher. The frame rate of each image was 30
fps. For timing detection, the two methods described
in 2.2 (timing detection methods (a) and (b)) were
used. The absolute value of the event detection error
for each player determined by experiment is shown in
Fig. 6 and Fig. 7. For an image with a frame rate of 30
fps, the estimation error of one frame is about 0.033
seconds. However, according to Fig. 6, at least half
of the pitchers get lower estimation accuracy, so it is
possible to detect events in sub-frames. However, the
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estimation error increases depending on the pitcher.
The basic idea of the proposed method is to use tim-
ing of similar multiple motions. However, since form
varies significantly from pitcher to pitcher, we do not
think that it can be suitably used to obtain learning
data for timing detection. The obtained results lead
us to expect that improvement in estimation error can
be attained by selecting learning data to be used for
timing detection with certain criteria.

Fig. 6. Average detection error for each player
with timing detection method (a) described in
2.2.

Fig. 7. Average detection error for each player
with timing detection method (b) described in
2.2.

According to Fig. 7, by selecting the learning data
to be used at the time of event detection, it is possible
that most pitchers will be detected with accuracy of
less than 0.02 seconds.

4 Discussion

We believe that it is necessary to detect pitcher re-
lease timing with sub-frame accuracy to support sports
training. However, the tolerance limit of the accuracy
of timing detection actually required for sports training
is unknown.
Therefore, as an example of an application sup-

porting sports training, we used a system that syn-
chronously displays a pitching image and ball trajec-
tory data obtained by a sensor, and verified the re-
quired accuracy of event timing detection. We carried
out a subjective evaluation by deviating from manually
attached synchronous timing in the same system in five
stages ranging from (1. a sense of discomfort) to (5. a
sense of naturalness). The subjects were ten ordinary
men and women, and we initially presented the correct
timing data twice to each of them and instructed them
to evaluate it using 5 as a reference value. The stimuli
comprised 15 pitchers, both right- and left-handed, for
each of whom the amount of synchronization shift was
changed. The average results for the subjects in the
experiment are shown in Fig 8.
It is clear from this graph that the values from -

0.01 to + 0.02 seconds are higher than the evaluation
value of 4.5. This shows that the proposed method is
applicable to the VR system we have developed.

Fig. 8. Average evaluated values for differences
from correct timing.

5 Conclusion

In this research, we are aiming at achieving instan-
taneous event detection in sub-frame units, especially
for sports videos. For that purpose, we developed a
method to achieve pseudo-high frame rates in low di-
mensional space and perform event detection in low
dimensional space. Experiments conducted using base-
ball pitching videos confirmed that event detection is
possible with an accuracy of 0.02 seconds or less, which
exceeds human perception accuracy. In fact, we are
developing a virtual reality training system that uses
baseball pitching videos and ball trajectory data, and
if it is able to achieve automatic synchronization based
on learning data it will greatly contribute to provide
added convenience to sports players using it. How-
ever, there are still problems involved in how players
learn and how data to be used for learning should be
selected. We are planning to consider these issues in
the future by adopting a classification method and a
framework for active learning. We have targeted sports
videos in the method we developed, but it is not re-
stricted to the types of motions made in sports but
can be applied to other actions.
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