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Abstract

Depth-Image-Based Rendering (DIBR) is a ma-
ture and important method for making free-viewpoint
videos. As for the study of the DIBR approach, on the
one hand, most of current research focuses on how to
use it in systems with low resolution cameras, while a
lot of Ultra HD rendering devices have been launched
into markets. On the other hand, the quality and ac-
curacy of the depth image directly affects the final ren-
dering result. Therefore, in this paper we try to make
some improvements on solving the problem of recover-
ing the depth information for Ultra HD cameras with
the help of a Kinect V2 sensor. To this end, a linear
least squares method is proposed, which recovers the
rigid transformation between a Kinect V2 and an Ul-
tra HD camera, using the depth information from the
Kinect V2 sensor. In addition, a mon-linear coarse-
to-fine method, which is based on Sparse Bundle Ad-
Justment (SBA), is compared with this linear method.
Ezperiments show that our proposed method perform-
s better than the non-linear method for the Ultra HD
depth image recovery both in computing time and pre-
cision.

1 Introduction

With so many Ultra HD resolution 3D TVs and high
resolution Virtual Reality (VR) headsets having been
launched into the market, the creation of the high-
quality and high-resolution contents for these devices
is becoming a research hotspot. Depth-Image-Based
Rendering (DIBR) [1] is such a method which can be
used for free-viewpoint video creation. The depth in-
formation in DIBR is very important because the ac-
curacy of it is the key influence factor for the quality of
free-viewpoint rendering. Therefore, in this paper, we
focus on the depth information recovery for Ultra HD
RGB cameras. The depth recovery for multiple RGB
cameras has been well researched and can be classi-
fied into two categories. One is the light field-to-depth
approach [2, 3], the other is stereo matching [4, 5].

Since most of the color-image-based methods above
may not address the problem of recovering the depth
information of regions without textures, it is also a
good choice to solve this problem using the depth in-
formation from depth sensors. To achieve this, the
calibration between the depth sensor and color cam-
eras is a crucial step. Zhang et al. propose a maximum
likelihood solution for this calibration problem using
a Kinect V1 [6]. However, the distortion of the depth
values is not addressed by their method. Herrera et al.
propose a calibration algorithm for a Kinect V1 depth
sensor and a color camera pair with distortion correc-
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tion [7]. Hansard et al. find a 3D projective transfor-
mation for the ToF-stereo calibration of a time-of-flight
(ToF) sensor and two RGB cameras [8]. Jung et al. de-
sign a special 2.5D pattern board for the calibration of
a low resolution ToF sensor and a high resolution RGB
camera [9].

The second version of the Microsoft Kinect (Kinect
V2) is also based on the ToF technology and is one of
the most high-speed and low-cost ToF sensors in the
market. Besides, the difference between Kinect V2 and
Kinect V1 is well studied in [10, 11], where it is stated
that the Kinect V2 has higher accuracy than Kinect
V1.

In this paper, we try to make full use of the ToF
sensor in a Kinect V2 camera to map the depth infor-
mation to an Ultra HD resolution camera. To this end,
a linear least squares method is proposed. Specifically,
a regular 2D checkerboard is employed to find corre-
sponding points between the Kinect V2 sensor and the
Ultra HD camera. Then, the rigid transformation be-
tween these two cameras is solved by the least squares
method. Furthermore, a non-linear coarse-to-fine so-
lution is also explored and compared with the linear
one. The difference between the non-linear approach
and the metric calibration method in [12] is that the
corner points in the 3D space are recovered through
the Kinect V2 sensor. Experiments are conducted on
a camera rig with one Kinect V2 and one Sony DSLR
camera. Experimental results show the superiority of
the proposed linear method both in precision and com-
puting time.

2 Methodology

In this section, the calibration process of a Kinect
V2 camera and an Ultra HD camera is introduced in
detail.

2.1 Preliminary

The internal parameters of pinhole cameras are im-
portant properties for camera calibration. To approxi-
mate these factors, substantial methods have been pro-
posed [13]. For the Ultra HD camera in our system,
the traditional checkerboard-based method is adopted
[14]. For the Kinect V2 camera, the ToF sensor in it
can also be modeled as a pinhole camera [15]. Its in-
trinsic parameters can be accessed through the Kinect
for Windows SDK or computed in the same way as for
a color camera. These intrinsic parameters are then
used to compensate lens distortions of both cameras.

2.2 Linear Method

Suppose a pair of corresponding points in the Kinec-
t V2 and camera image planes is measured by the
checkerboard corner-based method. The point in the
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3D coordinate system of the Kinect V2 is given as x;
2T zi]T.The corresponding point in the Ultra HD

camera image plane is denoted as u; = [u; v; 1]T in
the homogeneous coordinates. The 3D point x; is first
transferred to the camera coordinate system of the Ul-
tra HD camera using the rigid transformation defined
by a rotation R and a translation ¢, then projected to
the image coordinate system of this Ultra HD camera.
Therefore, the transformation and projection process
can be described as:

Here, K is the camera matrix of the Ultra HD camera
and A is a scaling factor. To simplify equation (1), we
use

p; =Ky, (2)
on the right side, where p, is a calibrated image point
and p, = [pi G 1]T Therefore, equation (1) be-
comes:

The scaling factor A is calculated from equation (3) as:

A=[rs1 732 7r33|m;+i3 (4)

Then, equation (3) can be written as:

T T T
a:l- 0 —piCL’Z— 1 0 —Pi _
ot z2f —gxf 0 1 —g h=0 (5)
where
h=[ri1 72 r3z t1 t2 t3]T (6)

Here, h is a vector with twelve variables describing the
rigid transformation between the ToF sensor of Kinec-
t V2 and the Ultra HD camera. This problem can
be solved by a Linear Least Squares (LLS) method
like Singular Value Decomposition (SVD). At least six
corresponding point pairs should be utilized to solve
it. However, the drawback of this method is that the
output R is not a standard rotation matrix, which is
needed for refinement by other parameter estimation
methods, e.g., Bundle Adjustment (BA).

2.3 Non-Linear Method

A non-linear method is exploited here in order to
make a comparison with the linear one. A coarse-to-
fine strategy is adopted to make the method more ro-
bust.

2.3.1 Coarse Estimation

Suppose there are a Kinect V2 and an Ultra HD
camera. A corresponding point pair in the Kinect V2
3D coordinate and the Utra HD camera image plane
are denoted as x; and u; as in Section 2.2. The coarse
estimation step is designed to give a coarse estimation
of the rigid transformation from the Kinect V2 depth
sensor coordinate system to the Ultra HD camera co-
ordinate system, which is defined as (R, t). The rigid
transformation estimation is obtained by minimizing
the following formula:

. - ) 2
%;W‘%Kﬂw (7)
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Here, n stands for the number of corresponding point
pairs. Note that the 3D coordinate system of the ToF
sensor in the Kinect V2 camera is used as the refer-
ence coordinate system here, which is different from
[14], where the 3D coordinates in a model plane are
treated as the reference coordinate system. Equation
(7) describes a non-linear least squares problem, which
can be solved by the Levenberg-Marquardt optimiza-
tion approach.

2.3.2 Estimation Refinement

After the coarse estimation process, the R and ¢ for
transferring the 3D points from a Kinect V2 ToF sen-
sor to an Ultra HD camera have been computed. To
make this problem more general, suppose there is one
Kinect V2 camera with multiple Ultra HD cameras,
the number of which is denoted as m. The rigid trans-
formation between the Kinect V2 and the Ultra HD
camera j is expressed as R; and t;. The estimation
refinement step can be formulated as:

m+1 n
i M — (. K R )2 8
i, 2 2 vl — 6w Ky R ) ()

Here, K;,R;,t; with j = 1,...,m relate to the Ultra
HD cameras and K, 11, Ryn41, tmt1 to the Kinect V2
sensor. Furthermore, wu;; is the ground truth point in
the j-th image plane corresponding to a 3D point x; in
the world coordinate system, and v;; € {0, 1} denotes
the visibility between these two points. To solve this
problem, the 3D coordinate system of the ToF sensor
in the Kinect V2 camera is set as the world coordi-
nate system. A generic Sparse Bundle Adjustment (S-
BA) method is employed to solve this non-linear least
squares problem efficiently [16].

(a) Frontal view (b) Vertical view
Figure 1. Cameras in our system.

3 Experiment

3.1 Experimental Settings

System: The system is built on a rig on a tripod, us-
ing a Sony a7R II DSLR camera mounted with a
Canon lens and a Kinect V2 sensor. The positions
and orientations of these two cameras are illustrat-
ed in Fig. 1. The displacement between the cen-
ters of the two cameras is around 19 centimeters.
Note that the original resolution of the Sony cam-
era is 7,952 x 5, 304 pixels, which is downsampled
to the Ultra HD resolution of 3,840 x 2, 561 pixel-
s for the experimental evaluations described here.
The depth sensor in a Kinect V2 has a resolution
of 512 x 424 pixels.

Field of view: The Field of View (FOV) of the depth
sensor in the Kinect V2 camera is ~ 70 degrees
[17]. Since the focal length of the Sony camera
can be adjusted, we set the FOV of the Ultra HD
camera to a similar FOV as the Kinect V2 sensor.
An example capture of both cameras for the same
scene is shown in (a) and (b) in Fig. 2.



Table I. The RMSE and computing time of dif-
ferent methods.

Method RMSE (pixel) Time (ms)

Linear Method 0.781 1.2
Non-linear Method (Coarse) 2.045 1.6
Non-linear Method (Refine) 0.993 16.0

Intrinsic parameter: The intrinsic parameters of
both the Ultra HD camera and the ToF sensor
in the Kinect V2 camera are estimated by a s-
tandard checkerboard-based calibration process.
The checkerboard used in our experiments has 266
(19x14) corners and the size of each black or white
square field is 15 x 15 mm. The internal param-
eters are then utilized to undistort all the output
views of both cameras.

Corresponding point pair: To evaluate the effects
of both methods, corresponding point pairs need
to be found in advance. Here, a bigger checker-
board with 54 (9 x 6) corners is placed in the
jointly visible areas of both cameras twice. The
size of each square of this checkerboard is 52 x 52
mm. Therefore, in total 108 corner points are de-
tected automatically in each camera. It should be
noted that in the view of the Kinect V2 camer-
a, the infrared view is actually used for detecting
the corner points and the depth values of them are
estimated by using the same specific filter as de-
scribed in [18] on the corresponding depth image.

Ultra HD depth recovery: Because there is a sig-
nificant difference in resolutions of these two cam-
eras, it is prone to get a recovered depth image
with most of the information missing by directly
performing the rigid transformation from the low-
resolution Kinect V2 ToF sensor to the Ultra HD
camera image. To solve this problem, an over-
sampling strategy in DIBR is employed here [19].
Rigid transformation is done after oversampling
the depth image in the Kinect V2 with a factor of
10 using the Nearest-Neighbor method.

Evaluation standard: Here, the Root-Mean-Square
Error (RMSE) is adopted to evaluate the effects of
our proposed method. It estimates the precision
in pixels only in the Ultra HD image plane using
the same corresponding point pairs as above.

All experiments are conducted on an Intel Core
i3 — 4030U laptop with 16 GB memory and no GPU
acceleration.

3.2 Results and Analysis

The quantitative error report of our proposed linear
method and the non-linear method is shown in Table I.
The linear method outperforms the coarse-to-fine non-
linear method. The reason for this may be that the
depth information of the points in the ToF sensor of
the Kinect V2 is not accurate enough, while the SBA
algorithm heavily relies on the accurate structure of
these points [20]. The computation time of both algo-
rithms is also exhibited in Table I. The linear method
is around 14 times faster than the non-linear one.

The visualization of the final recovered depth image
for the Ultra HD camera is illustrated in Fig. 2. Note
that, in (a), each pixel corresponds to a depth pixel
which is not shown here. It is called registered color im-
age corresponding to a registered depth image, which
is plotted with the help of the depth-to-color map in
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the Kinect for Windows SDK for a better understand-
ing. The recovered color (c¢) and recovered depth (d)
are the recovered results for the Ultra HD camera using
the registered color image and registered depth image
respectively with our proposed linear method. Both of
them have the same resolution as the Ultra HD camera
view in (b). It can be found that the depth image (d) is
well recovered except for some occlusion regions which
are caused by the displacement between cameras.
Both the linear and the non-linear method can be
extended to the case of multiple Ultra HD cameras.
For lack of space, the case of only two cameras is eval-
uated here. In addition, the proposed linear calibra-
tion method can also be used for recovering the color
information for the depth map using a color camera.

4 Conclusion

In this paper, the problem of recovering the depth
information of a high resolution Ultra HD camera using
a low resolution Kinect V2 sensor is tried to be solved.
A linear solution method is proposed for this prob-
lem, which is also compared with a coarse-to-fine non-
linear method. Experimental results demonstrate the
effectiveness and efficiency of this linear method, which
performs better than the other. Moreover, the recov-
ered Ultra HD depth image still has room for quality
improvement, which will be our next research goal.
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