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Abstract

A novel self-calibration method for estimation of radial lens
distortion is proposed. It requires only a single image of
a textured plane that may have arbitrary orientation with
respect to the camera. A frequency-based approach is used to
estimate the perspective and non-linear lens distortions that
planar textures are subject to when projected to a camera
image plane. The texture is only required to be homogeneous
and may exhibit a high amount of stochastic content. For
this purpose, we derive the relationship between the local
spatial frequencies of the texture and those of the image.
In a joint optimization, both the rotation matrix and the
radial distortion are subsequently estimated. Results show
that with appropriate textures, a mean reprojection error
of 9.76 · 10−5 relative to the picture width is achieved. In
addition, the method is robust to image corruption by noise.

1 Introduction

Camera calibration is of great importance in many computer
and machine vision applications. Along with photometric
calibration, geometric calibration is a key component in
the identification of a camera system’s imaging properties,
and involves the estimation of intrinsic and extrinsic camera
parameters. Extrinsic parameters define the 3-d coordinate
system transformations from world coordinates to camera
coordinates, i. e. the relative pose of an object with respect to
the camera. Intrinsic parameters determine the perspective
mapping of 3-d points given in camera coordinates to the
image plane, i. e. the camera sensor. Commonly, a pinhole
camera model is assumed for the mapping, resulting in a
linear projective transformation.
Real-world cameras exhibit several additional non-

linearities including non-planar sensor geometry or lens
distortion. In particular, wide-angle lenses usually lead to
strong distortions. They can only partly be mitigated by
increasing the expenditure of lens production. For many
industrial machine vision tasks, however, geometrically cor-
rect, i. e. linear projective portrayal of the scene is required.
Undistorting an image corrupted by lens distortion is there-
fore a common pre-processing step. The usual approach is
to measure lens distortion at a single point of time before
camera deployment using specialized calibration targets. In
some applications, however, calibration prior to operation
is not feasible, or only the resulting image is available. In
these cases, self-calibration methods have to be employed.
They enforce constraints on the scene, the camera motion
or the intrinsic parameters, e. g. by incorporating a-priori
knowledge of the image content such as the presence of
straight lines. In contrast, we present a method for the joint
estimation of extrinsic and intrinsic camera parameters by
using planar textures in the scene. It is based on the distor-
tion of texture patches caused by perspective projection and
lens distortion (Fig. 1). This projection is analyzed in the
frequency domain.

Planar textures occur in many industrial applications such
as optical quality inspection of man-made surfaces. In
order to accommodate for flexible imaging environments,
a versatile self-calibration mechanism is needed. For in-
stance, images of machined—i. e. ground and milled—metal
surfaces are well-suited for the proposed method.

Figure 1. Examples of textured images exhibiting
perspective distortion (left panel), radial lens distortion
(center panel), and combined distortion (right panel).

Our paper is organized as follows. In Section 2 an overview
over previous work and its limitations is given. In Section 3
we recapitulate the principles of perspective and non-linear
projection and present our frequency-based approach to esti-
mate it. The method is subsequently evaluated in Section 4.
We conclude with a discussion of the results.

2 Related Work

Geometric calibration is of ongoing interest in both the
computer vision and the photogrammetry communities. Sur-
veys can be found in [1–3]. A recent assessment of several
state-of-the art methods was carried out in [4]. Target-based
algorithms require checkerboards [5–7] or other markers.
Sinusoidal patterns displayed on computer screens were
proposed in [8]. The use of dedicated calibration targets,
however, is not possible in many configurations. Also, it
does not allow for a dynamic re-calibration to account for
changing camera parameters such as the change of focus or
focal length in a zoom lens. Self-calibration techniques do
not rely on specialized targets, but instead exploit the image
content itself. The “plumbline” approach attempts to detect
and rectify lines in the image [9, 10]. The assumption of
straight lines within the image is not always fulfilled, though.
The possibility to utilize textures for calibration was explored
in [11], making a low-rank assumption on texture patches
and requiring multiple occurrences of those patches. Highly
stochastic textures therefore fail due to their high entropy
and full rank.
The non-linear projection of planar surfaces on the one

hand and the linear projection of arbitrarily shaped surfaces
on the other hand represent to a limited extent a dual problem.
Therefore, the proposed method is strongly connected to the
shape-from-texture (SfT) problem. A recent general survey
on SfT methods is given in [12]. In [13], frequency-based
shape recovery was performed, based on earlier work [14,
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15]. However, shape recovery poses integrability constraints
which are different from those introduced by perspective and
radial distortion.

3 Radial Distortion from Local Spectra

We propose a method that exploits the spectral content of
projected textures for estimating radial lens distortion. It
requires only a single picture of a texture (Fig. 1). We assume
a textured plane to be freely rotated in space. We then find an
expression for the backprojection of non-linearly projected
coordinates of that plane imaged by a projective camera
with lens distortion. If the planar texture is homogeneous,
its spectral content is constant over the location in texture
coordinates. Following the parlance of [16], the “instanta-
neous” 2-d frequency of an image intensity signal will be
called local spatial frequency (lsf). After the projection,
the texture and therefore its lsfs are unequally distorted
depending on the image coordinate. Using the backprojected
coordinates and the relation between frequency and phase of
a signal, we are able to give the relationship between the lsfs
of the projected image and those of the original texture. The
location-dependent spectral content of the image is estimated
using a Gabor filter band. Using these spectra as observation
vector and the analytically-derived backprojected spectra as
objective function, the process of estimating the extrinsic
and non-linear intrinsic camera parameters is expressed as a
non-linear least-squares minimization problem.

Notation Independent of letter case and font style, variable
names “p” indicate spatial coordinates of different
kinds and variable names “I” indicate intensity signals.
Vectors and matrices are printed in boldface. For clarity,
spatial quantities such as coordinates, frequencies, and
phases with superscript index (·)I denote quantities of
the projective image, whereas quantities with index (·)Id
are quantities of the lens-distorted image and quantities
with index (·)T are texture quantities. A lower-case sans-
serif superscript (·)t marks the transpose of a vector or
matrix.

3.1 Geometric camera model

In the pinhole camera model [17], a projective camera is
assumed with rotation R ≡

(
ri j

)
∈ �3×3 and translation

t ≡
(
tx, ty, tz

)t (extrinsic parameters), and camera calibration
matrix K ∈ �3×3 (intrinsic parameters). We assume a
simplified calibration matrix with focal length f , vanishing
skew coefficient, and a principal point centered at the origin,
i. e.

K =

( f 0 0
0 f 0
0 0 1

)
. (1)

Let the rotation matrix

R ≡

(r11 r12 r13
r21 r22 r23
r31 r32 r33

)
= RγRβRα (2)

be constructed of concatenated rotations Rγ, Rβ , and Rα
around the unit vectors by α, β, and γ.
In general, a scene point P ≡

(
Px, Py, Pz

)t in 3-d world
coordinates is projected to a homogeneous coordinate

p ≡
(
px, py, pz

)t
= KR (P − t) , (3)

obtaining the resulting image coordinate pI ≡
(
pI
x, pI

y

)t

through normalization by the z component:

pI =
©«

px

pz
py
pz

ª®®®¬ = f ·
©«

r11(Px − tx) + r12(Py − ty) + r13(Pz − tz)
r31(Px − tx) + r32(Py − ty) + r33(Pz − tz)

r21(Px − tx) + r22(Py − ty) + r23(Pz − tz)
r31(Px − tx) + r32(Py − ty) + r33(Pz − tz)

ª®®®®¬
.

(4)

3.2 Lens distortion model

The geometric lens distortion introduced by lens imperfec-
tions is a non-linear function L: �2 → �2 and results in a
location-dependent displacement δ

(
pI) ∈ �2 such that the

resulting distorted image coordinate pId ≡
(
pId
x , pId

y

)
is

pId = L
(
pI

)
≡

(
Lx

(
pI)

Ly

(
pI) ) = pI + δ

(
pI

)
. (5)

Commonly, the Brown-Conrady approach [18, 19] is used
to parametrize L, modeling the distortion by radial and
tangential displacement components which are approximated
by a Taylor series expansion. It was shown in [5] that the
tangential components are negligible for many applications.
Thus, only the radial components of the Taylor series are
considered, accounting for barrel and pincushion distortion:

pId = L
(
pI

)
= pI

(
1 +

∞∑
i=1

ci r I 2i
)
, (6)

with r I ≡
pI


2 =

√
pI
x

2
+ pI

y
2 denoting the distance from

the image center, and coefficients ci ∈ �.
In order to rectify the image, non-linear distortions have

to be reversed. However, Eq. (6) cannot be inverted to a
closed-form solution. In accordance with [9], the inverse
transformation L−1 is modeled by a Taylor expansion as
well, which is stopped after the first radial displacement
component determined by the coefficient κ ∈ �:

pI = L−1
(
pId

)
≡

(
L−1
x

(
pId

)
L−1
y

(
pId

)) = pId
(
1 + κ r Id 2

)
, (7)

with distance r Id ≡
pId


2 =

√
pId
x

2
+ pId

y
2
from the center of

the distorted image.

3.3 Textures

We presume that larger, not necessarily connected regions
of an image are a projection of a texture. We further require
that this texture fulfills the homogeneity constraint, i. e. it is
location-independent [20, 21]. Furthermore, it may contain
strong stochastic signal components.
Our method exploits the assumption that the perspective

and non-linear distortions of texture patches are locally affine.
Instead of allowing arbitrary orientations of the textured
plane, we keep it fixed and rotate the camera instead. We
therefore assume a texture intensity signal I

(
pT) at texture

coordinate pT ≡
(
pT
x, pT

y

)t
located in the x-y plane of the

3-d world coordinate system, corresponding to

P =
©«
pT
x

pT
y

0

ª®®¬ , (8)
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and

t =

(0
0
tz

)
. (9)

In this case, Eq. (4) simplifies to

pI = f ·

©«
r11pT

x + r12pT
y − r13tz

r31pT
x + r32pT

y − r33tz

r21pT
x + r22pT

y − r23tz
r31pT

x + r32pT
y − r33tz

ª®®®®®¬
. (10)

Due to the planarity constraint stated in Eq. (8), Eq. (10) can
be inverted up to a constant scale factor. The backprojected
homogeneous coordinate p′ ≡

(
p′x, p′y, p′z

)t
is

p′ = R−1K−1 ©«
pI
x

pI
y

1

ª®®¬ = R−1K−1 ©«
L−1
x

(
pId

)
L−1
y

(
pId

)
1

ª®®¬ (11)

and the backprojected coordinate pT ′ ≡
(
pT
x
′
, pT

y
′
)t
in texture

coordinates is

pT ′ =

(
p′x/p

′
z

p′y/p
′
z

)
= −

pT

tz
. (12)

The scale factor −1/tz is introduced by the ambiguity with
respect to the distance of the camera.
Without loss of generality, we consider a 2-d sinusoidal

texture signal

I
(
pT

)
≡ 1

2 +
1
2 cos ωT

0
t
pT (13)

= 1
2 +

1
2 cos

(
ωT

0,xpT
x + ω

T
0,ypT

y

)
with 2-d spatial frequency ωT

0 ≡
(
ωT

0,x, ω
T
0,y

)t
. Let I

(
pId

)
denote the intensity signal of the distorted image. Since
pId corresponds to pT, the intensity values in the projected
image at distorted coordinates pId are the corresponding
intensity values in the texture image at original coordinates
pT:

I
(
pId

)
= I

(
pT

)
. (14)

Here, we neglect distance-depending haze effects and low-
pass filtering introduced by the point-spread function of the
lens.

Subsequently, the local phases in the projected image and
the texture image are equal:

ϕI
(
pId

)
= ϕT

(
pT

)
. (15)

3.4 Estimation of lens distortion

In general, the 2-d lsf ω(p) ≡
(
ωx (p), ωy (p)

)t is the
gradient of the local phase:

ω(p)= ∇ϕ(p). (16)

Applying the gradient operator on both sides of Eq. (15) and
substituting its backprojection −tz pT ′ for pT according to
Eq. (11), we find

ωI
(
pId

)
= ∇ϕT

(
−tz pT ′

)
. (17)

Hence,
ωI

(
pId

)
= −tz∇

(
ωT

0
t
pT ′

)
. (18)

We find the lsfs

ωI
(
pId

)
= −tz

©«
∂

∂pId
x

∂

∂pId
y

ª®®®®¬
(
ωT

0,x
p′x
p′z
+ ωT

0,y
p′y
p′z

)
(19)

in the distorted image as 2-d function

ωI
(
pId

)
= F

(
pId, κ, K, R

)
(20)

of pId and κ, K , and R.
After inserting Eq. (7) and Eq. (11) into Eq. (19), F is

derived analytically by a symbolic solver to a closed-form
solution, which is not given here for reasons of brevity.
The estimation of the camera parameters can then be

formulated as the non-linear least-squares minimization
problem

arg min
κ,K,R

ω̂I
(
pId

)
− F

(
pId, κ, K, R

)2

2
, (21)

with observations ω̂I (pId
)
at observation points pId .

We therefore need to find estimates ω̂I (pId
)
of the 2-d

lsfs in the projected image I
(
pId

)
.

Unlike previous methods such as [8] for calibration with
sinusoidal patterns, or [13] for SfT techniques, we do not as-
sume a single dominant frequency and drop the confinement
to sinusoidal textures (13) in the following. Instead, the en-
tire local spectrum of a texture patch at image coordinate pId

is utilized. Thus, the ill-posed problems of 3-d integration
and 2-d phase unwrapping are avoided.
For spectral estimation, a 2-d k-band Gabor filter bank

with impulse responses

gn

(
p,ωI

)
= e
− 1

2

(
p2
x

σ2
x
+

p2
y

σ2
y

)
· e−j(ωn,x px+ωn,y py), (22)

n = 1 . . . k, is used. The center frequencies are linearly
spaced within the frequency range. Its lower and upper
boundaries are determined in a pre-processing step by identi-
fying the range of the significant frequencies in themagnitude
of the 2-d Fourier spectrum of the projected image.

Applying the Gabor filter bank on the textured regions of
the distorted image I

(
pId

)
, the 2-d spectral estimate

Ŝ
(
pId

)
=

(
g1,x · · · gk,x
g1,y · · · gk,y

)
︸                 ︷︷                 ︸

≡ G(pId )

∗ I
(
pId

)
(23)

of size 2× k with the elements

gn,x = g

(
pId,

(
ωn,x

0

))
, gn,y = g

(
pId,

(
0

ωn,y

))
(24)

of G
(
pId

)
is obtained for each image coordinate. Subse-

quently, the spectrum magnitude
��� Ŝ (

pId
) ��� is calculated.

To accommodate for low-pass filtering due to the point-
spread function of the optical system, the spectral estimate is
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normalized to its L2 norm. Since the homogeneity constraint
is fulfilled, we can assume constant spectra throughout the
original texture image.
The full optimization problem can now be written as

arg min
κ,K,R

��� Ŝ (
pId

)��� − ���F {
G

(
pId

)}���
ω=F(pId,κ,K,R)

2

Frob
,

(25)
with F {(·)} denoting the Fourier transform. The objective
function is the magnitude of the frequency-domain filter bank
response evaluated at the projected lsfs. The Frobenius
norm is used as matrix distance to be minimized. It can be
found from Eqs. (1) and (2) that a total of five parameters (κ,
f , α, β, and γ) have to be estimated.

4 Evaluation

4.1 Implementation

The number of bands of the Gabor filter bank was set to
k = 16. For solving Eq. (25), the Levenberg-Marquardt
algorithm [22, 23] was chosen due to its robust convergence
characteristics. The Jacobian of the objective function was
derived analytically by a symbolic engine and provided as
input. κ = 0, f = 1, and α = β = γ = 0° were used as initial
parameters for all experiments.

4.2 Test data

For evaluation, three natural grayscale textures (D22, D77, and
D92) from the Brodatz dataset [24] (Fig. 2, top row) and
three high-resolution textures (blanket1, lentils1, wall1)
from the Kylberg dataset [25] were selected. Textures
with strong repetitive structures (e. g. D22 and D77) or strong
stochastic content (e. g. D92) were chosen. All images
exhibit negligible perspective and lens distortion and fulfill
the homogeneity and isotropy requirements. In addition, two
textures (stones, coffee, (Fig. 2, bottom left and center)
were evaluated that were modified to allow for seamless
perfect repetition. As reference, a superimposition of two
orthogonal 2-d sinusoidals was used (Fig. 2, bottom right).

Figure 2. Top, from left to right: Details of Bro-
datz textures D22, D77, and D92 (taken from [24]).
Bottom, from left to right: Seamless textures stones
and coffee, and superimposition of orthogonal sinu-
soidals (reference image).

Figure 3. Left: Example of non-linearly projected
texture D77. Right: Example of faux leather specimen.

4.3 Results

Non-linear projection was simulated by rotating the texture
images around the x, y, and z axes by different angles in
the range of ±25° and subsequently applying different radial
distortions with values of κ in the range of ±0.5. Image
coordinates were converted to floating-point values and
normalized to ±0.5 prior to processing; all results relate
to a normalized image width (see Fig. 3, left panel, for a
simulated projection).

Simulated radial and perspective distortion The rms er-
ror of κ depending on κ and the angle between the
projection axis and the z axis is depicted in Fig. 4, left
panel. The results were averaged across all eight test
images excluding the sinusoidal reference pattern. It
can be seen that the estimation performs worse if the
texture is less slanted and tilted. For the reference
pattern, the rms error of κ is almost constant over κ
and the axis angle and amounts to 4.17 · 10−4.

Simulated radial distortion only We assumed a projec-
tion axis perpendicular to the texture plane and only
estimated κ, i. e. we fixed α = β = γ = 0. κ was varied
in 20 steps between −0.5 and 0.5. The rms error of κ
is depicted in Fig. 4, right panel. It can be noticed that
our algorithm performs worse when the range of lsfs
is low within the distorted image. This is similar to the
findings in the combined radial/perspective distortion
case. For the reference pattern, the rms error of κ is
8.63 · 10−5.

0
0-0.5

0.005R
M

S
E

( 
)# 0.01

0.015

200
400.5 angle/deg

-0.5 0 0.5
0

0.002

0.004

0.006

0.008

0.01

R
M

S
E

(
)

Figure 4. Left: Estimation of perspective and radial
distortion. Right: Estimation of radial distortion only.

Physical projection Additional experiments were carried
out with a faux leather specimen that was photographed
in different orientations. The image (Fig. 3, right panel)
exhibits a narrow depth of field and inhomogeneous illu-
mination. The mean reprojection error of 32 manually
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Table 1. Impact of additive Gaussian noise on estima-
tion accuracy.

σn 0 1 2 5

erepr/10−4 1.41 1.65 2.87 7.31
rmse(κ)/10−3 4.74 6.81 10.40 18.29

marked points distributed equally across the image is
erepr = 9.76 · 10−5. We compared our method with the
results of the Caltech toolbox [26] implementation
of [6, 7]. Evaluating three images of different poses of
a 9×9 checkerboard target, a mean reprojection error
of erepr = 3.12 · 10−5 is obtained. Hence, we are able
to achieve very similar accuracy by evaluating just a
single image instead of three.

Influence of noise To investigate the susceptibility to noise,
we rotated the D77 texture by 15° around the x and y axes,
respectively, distorted the image with κ = 0.25, and
added Gaussian noise of different standard deviations
σn. The values of σn relate to an intensity value range
of 0 to 255. Each experiment was conducted 100 times.
Average results for the mean reprojection error erepr and
the rms error of κ are shown in Table 1. For a noise
standard deviation of σn < 2, there is no significant
impact on estimation accuracy.

5 Conclusions

In this paper, we presented a novel method for estimation
of lens distortion. It requires only a single image of homo-
geneous textures. We derived the transformation of local
spatial frequencies under perspective and radial distortion
and formulated the estimation of camera parameters as a
non-linear least-squares optimization problem. The experi-
mental results show that with suitable textures, our algorithm
performs similar to the state of the art in terms of the orders
of magnitude of the reprojection error and the estimation
error of the radial distortion coefficient. However, a direct
comparison is not possible since previous approaches enforce
other constraints on the image content and focus on different
applications. Limitations of the method were identified in
the estimation of pure radial distortion with no perspective
projection involved.
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