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Abstract

We propose a novel approach to unsupervised video seg-
mentation based on the trajectories of Temporal Super-
pixels (TSPs). We cast the segmentation problem as a
trajectory-labeling problem and define a Markov random
field on a graph in which each node represents a trajectory
of TSPs, which we minimize using a new two-stage opti-
mization method we developed. The adaption of the tra-
jectories as basic building blocks brings several advantages
over conventional superpixel-based methods, such as more
expressive potential functions, temporal coherence of the
resulting segmentation, and drastically reduced number of
the MRF nodes. The most important effect is, however, that
it allows more robust segmentation of the foreground that is
static in some frames. The method is evaluated on a subset
of the standard SegTrack benchmark and yields competitive
results against the state-of-the-art methods.

1 Introduction

Successful processing and analysis of videos enables ap-
plications such as video retrieval [1], action recognition [2],
and video summarization [3]. Segmentation of video is im-
portant for such higher-level tasks. Unsupervised segmen-
tation, which requires no user intervention, is more desir-
able than the supervised approach in which the user manu-
ally annotates the first frame [4, 5, 6, 7]. However, it is more
difficult since the segmentation must be done based on mo-
tion cues alone. Several approaches to unsupervised video
segmentation have been proposed [8, 9, 10, 11]. A com-
mon preprocessing step is superpixel segmentation, usually
independently applied to each frame. Superpixels are used
for efficiency, to aggregate local statistics, and to compute
feature descriptors. However, superpixels can be inconsis-
tent between consecutive frames, making it hard to estab-
lish a correspondence between the frames. Since consecu-
tive frames in a video are similar to some extent, superpixel
segmentation should respect temporal coherency as well.
This is exactly the goal of Temporal Superpixel (TSP) [12].

Here, we propose a new approach to unsupervised video
segmentation based on the trajectories of TSPs. We cast
the segmentation problem as a trajectory labeling problem,
i.e., each trajectory is determined to be foreground or back-
ground. We define a Markov random field on a graph in
which each node represents a trajectory of TSPs, with a
novel energy which we minimize using a new two-stage op-
timization method we developed. The method is evaluated
on a subset of the standard SegTrack benchmark and yields
competitive results against the state-of-the-art methods.

2 Trajectory-based Video Segmentation

Our approach to the unsupervised video object segmenta-
tion is based on the Temporal Superpixel (TSP) [12], which
produces superpixels that are temporally consistent. The
TSP is a generative probabilistic model of superpixel ap-
pearance and motion that can be interpreted as a probabilis-

tic and temporal extension of the state-of-the-art SLIC su-
perpixel method [13].

2.1 TSP Trajectory Markov Random Field

A pair of temporal superpixels in consecutive frames are
assigned the same ID if one of the superpixels is success-
fully tracked from the other based on color similarity and
optical flow. Therefore, a set of TSPs with the same ID
can be intuitively thought to form a spatio-temporal tube. It
will be referred to as a TSP trajectory or simply trajectory
hereafter. A trajectory can consist of a superpixel in a sin-
gle frame or it can span the entire length of the video. See
Fig. 1 for illustration.

Taking advantage of the remarkable stability of TSPs
across frames, we assume that they do not cross the object-
background boundary and formulate the video segmenta-
tion as a trajectory labeling problem. Thus, each TSP tra-
jectory is assumed to be completely contained in the fore-
ground or the background. In our formulation, each trajec-
tory is a single node in an MRF.

The adaption of the TSP trajectories as basic build-
ing blocks brings several advantages over conventional
superpixel-based methods [9, 8]. First, compared to a single
superpixel, a sequence of superpixels enables us to design
more expressive potential functions. Second, a single tra-
jectory is temporally coherent by design, which promotes
temporal coherence of the resulting segmentation. Third,
using trajectory helps segment a part of the foreground that
is static in some frames: in previous approaches, it was of-
ten difficult to segment a foreground that stays static for a
few frames, because motion cues such as optical flow are
temporally local; with the TSP algorithm, the static region
can be easily tracked across many frames till it starts mov-
ing. Using the proposed unary potential described next,
lack of motion in some frames can be compensated by non-
static regions in other frames on the same trajectory. As
an additional benefit, the number of nodes in the MRF is
drastically reduced.

Temporal Superpixel
Superpixel

Input Frames

Figure 1: The Temporal Superpixel (TSP). Unlike the SLIC
superpixel algorithm [13], which is applied to each frame
individually (center), the TSP algorithm [12] tracks super-
pixels corresponding to the same regions across frames,
forming trajectories of superpixels (right).
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Figure 2: The location prior computed with the method of
[9] (center) and with the modified method (right). Fore-
ground likelihood is color-coded. The brighter regions are
more likely to be foreground.

Figure 3: Diffusion results. Input frames (left), the original
inside probabilities (center), and the diffused inside proba-
bilities (right) are shown.

Let V the set of trajectories, and E the set of pairs of
neighboring trajectories. Two trajectories are neighbors if
they are adjacent in at least one frame. The energy is of the
following form:

E(l) =
∑
u∈V

Uu (lu) +
∑

(u,v)∈E

Vu,v (lu, lv), (1)

where l = (lu)u∈V is the trajectory labeling, which assigns
a label lu ∈ {0, 1} to each trajectory u inV . We let 0 repre-
sent the background and 1 the foreground.

2.2 Unary Potential

The unary potential estimates the likelihood of trajecto-
ries being foreground or background based on various cues.
It consists of an appearance model Au (lu) and a location
model Lu (lu):

Uu (lu) = Au (lu) + Lu (lu). (2)

We build on the inside-outside map developed in [9] to com-
pute both the appearance and the location model.

Inside-outside Map. The inside-outside map gives each
pixel 1 if it is inside of the boundary and 0 otherwise. In [9],
it is computed in the following steps: (1) Approximate the
boundaries of the foreground by contour fragments, which
are pixels with optical flow edge strength above a fixed
threshold. That is, pixels in contour fragments are those
with large change in optical flow, typically on the boundary
between a moving object and the background. (2) Deter-
mine if each pixel is inside or outside of the boundaries by
shooting rays to eight directions from the pixel. If more
than four rays intersect contour fragments an odd number
of times, that pixel is deemed inside of the boundary.

In [9], the contour fragments are generated by threshold-
ing optical flow edge strength at a fixed value. We observed
that for some videos this threshold is too high and weaker
optical flow edge is lost after thresholding. To make the
construction of the inside-outside map more robust, we se-
lect N evenly spaced values in range [τmin, τmax] as thresh-

olds, compute a map for each threshold, and take the av-
erage of the maps for each pixel. Thus, the robust inside-
outside map is not binary valued, but takes values in the
range [0, 1]. Although it is not a radical change, the result-
ing location model does improve, as shown in Fig. 2.

Inside Probability. The inside-outside map is defined on
pixels. Now, for each superpixel, we define the inside prob-
ability as the ratio of pixels in that superpixel that are inside.
In the robust case, it is the average of the robust inside-
outside map. It can be interpreted as the probability of a
superpixel being inside of the foreground boundary.

Inside Probability Diffusion. Since the inside probability
is computed in each frame using optical flow, it fails when
a part of the foreground is static in some frames. Therefore,
we propose to diffuse the inside probability within each tra-
jectory. The aim is to compensate the lack of motion in
some frames where a part of foreground is static and thus
the corresponding inside probability is small. Consider all
the superpixels in the video and let pi and di be the original
and diffused inside probabilities of superpixel i. The diffu-
sion is done by minimizing the convex quadratic energy∑

i

ki (di − pi)2 + λ
∑
i

∑
j∈N (i)

1
2
wi, j (di − d j )2,

where ki are per-node weights and wi, j are defined as
wi, j = exp

(
−‖ci − cj ‖2/2σ2

)
, where ci is the mean RGB

color of superpixel i and σ is fixed to 30. To diffuse the in-
side probability within trajectories, the neighborhood N (i)
of superpixel i is defined to be the set of superpixels that are
spatially adjacent to i in the same frame or that are on the
same trajectory as i. The parameter λ controls the amount
of diffusion, and is set to 10 in all experiments. The mini-
mization can be achieved by solving a sparse linear system.
Figure 3 shows the diffused inside probability. Clearly, the
diffusion helps uncover foreground regions with small in-
side probability.

Appearance model. The appearance model is given by
a random forest classifier trained with the RGB color as
features. We choose training samples from the superpix-
els according to the diffused inside probability. For each
frame, we build a histogram with 20 bins of diffused inside
probability for the superpixels in the frame. Then we take
the superpixels in the first nonempty bin (with the smallest
diffused inside probabilities) as background samples. Skip-
ping the next three bins, we take the superpixels in the fifth
and all following bins as the foreground samples.

Let Su be the set of superpixels in trajectory u and Pi
app

the probability predicted by the random forest that super-
pixel i is foreground. Then Au (lu) for trajectory u is defined
as

Au (0) =
1
|Su |

∑
i∈Su

− log(Pi
app), (3)

Au (1) =
1
|Su |

∑
i∈Su

− log(1 − Pi
app). (4)

Location model. For the location model, the diffused in-
side probability is propagated forward and backward in
time using the method of [9]. Let Pi

loc be the propagated
inside probability. Then Lu (lu) for trajectory u is defined
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(a) high similarity (b) low similarity

Figure 4: Two neighboring trajectories with similar (dis-
similar) appearance and motion have high (low) similarity.

Figure 5: Two-step segmentation. The green regions indi-
cate the foreground. The intermediate result (left), the fore-
ground in the intermediate result (white) plus the shorter
trajectories (dark gray) (center), and the final segmentation
(right).

as

Lu (0) =
1
|Su |

∑
i∈Su

− log(Pi
loc), (5)

Lu (1) =
1
|Su |

∑
i∈Su

− log(1 − Pi
loc). (6)

2.3 Pairwise Potential

The pairwise potential measures the affinity between two
neighboring trajectories based on appearance and motion
similarity (Fig. 4). Unlike the standard Potts potential, we
allow it to be positive or negative, expressing both attraction
and repulsion. Because the traditional Potts potential only
take positive values, it prefer a shorter boundary, making it
harder to segment thin objects. By allowing both signs, we
avoid this tendency.

Since two neighboring trajectories are adjacent in at least
one frame and share at least one boundary, we derive the
affinity from the strength of color edges and motion edges
along the shared boundaries. Either of the two edges alone
is not sufficient to accurately model the affinity between
trajectories. The color edges are often on the desired object
boundary, but they can also be on other boundaries inside
the foreground or background. The motion edge is useless
when foreground is static. In addition, optical flow tends to
be inaccurate around foreground boundary. Therefore, we
define the pairwise potential to be a weighted sum of the
color affinity ψc(i, j) and the motion affinity ψm(i, j), such
as Vu,v (lu, lv) = wcψc(u, v) + wmψm(u, v) if lu , lv , and
0 otherwise. For the color edge, we use the state of the art
structured edge detector [14]. For the motion edge, we took
the same approach as [9] to compute the motion boundary
via optical flow. Both the color and the motion edges take
values in [0, 1]. We define the affinity between two adjacent
trajectories u and v by ψc(u, v) = 2 exp(−ηdc(u, v)) − 1,
where η is a fixed parameter. The distance dc(u, v) be-
tween the two trajectories computes the average of the edge
responses along the shared boundary in each frame, then
maximize it over the frames in which the two trajectories
are adjacent. The affinity ψm(u, v) is computed similarly.

2.4 Optimization

We propose a two-step optimization procedure to ob-
tain the final segmentation. In the first step, only relatively
long trajectories are segmented, while second step segments
all the trajectories after re-computing the unary potentials.
This is based on the observation that regions with ambigu-
ous unary potentials are often part of short TSP trajectories,
which range from a single to several frames. Also, we em-
ploy the recently introduced non-submodular optimization
method [15], since the use of the repulsion pairwise po-
tential introduces supermodular pairwise potentials to the
energy, preventing the use of the standard graph cuts.

Two-step Segmentation. Instead of segmenting all the tra-
jectories at once, segmentation is done in two steps. In the
first step, trajectories whose lengths are shorter than a pre-
determined length do not participate in the optimization.
Only longer trajectories, which cover most of the back-
ground and some parts of the foreground, are segmented.
The segmented regions are than used to re-estimate the
unary potentials. In the second step, the remaining trajecto-
ries are added to the MRF and unary and pairwise potentials
are updated. Optimization of the new energy gives the fi-
nal segmentation. Because most of the background are part
of the long trajectories and thus segmented in the first step,
the refined background appearance model is highly reliable.
The foreground appearance model also benefits from the
partially segmented foreground regions. The refined unary
appearance model helps segment regions with ambiguous
initial unary potentials and correct errors made in the first
step. The intermediate and the final segmentation results
are shown in Fig. 5.

Local submodular approximation. Recent advance in
MRF optimization and inference in a graphical model
makes it possible to optimize a general non submodular
energy effectively [15, 16]. Here, I employ in each step
of the optimization the Local Submodular Approximation
with Trust Region Strategy (LSA-TR) introduced in [15]
that showed impressive results on difficult non submodular
optimization problems [15, 17]. Briefly, LSA-TR approx-
imate supermodular terms in the energy by the Taylor ex-
pansion at the current solution and iteratively refine the ap-
proximation in the trust region framework proposed by the
same authors [18]. The algorithm internally invokes maxi-
mum flow computation a number of times. As used in this
work, it is extremely fast because the number of optimiza-
tion variables is small (the number of the TSP trajectories).

3 Experimental Validation

We evaluated the proposed approach on a subset of Seg-
Track dataset [19] that consists of four videos in which one
or multiple foreground objects are densely labeled. The
proposed method was applied to the four videos. The re-
sults are evaluated by average intersection over union (IOU)
scores. This measure is computed by calculating the inter-
section divided by the union of the segmented masks and
the ground truth masks, averaged over all frames.

Segmentation Results. Table 1 shows the average IOU
scores. They are compared against the state of the art
[8][9][10]. The most recent work is [8], currently the
top-performing method in the SegTrack benchmark. The
inside-outside map we used in this work was proposed in

420



Table 1: Average IOU score.

Name Proposed [8] [9] [10]
Bmx 0.76 0.79 0.67 0.17

Hummingbird 0.68 0.75 0.52 0.37
Soldier 0.68 0.83 0.69 0.60

Girl 0.61 0.91 0.73 0.82

Figure 6: The qualitative results. One of the frames (left)
and its segmentation (center). The segmentation of another
frame is also shown (right). From top to bottom: Bmx,
Hummingbird, Solider, Girl.

[9], which is one of the approaches based on the object pro-
posal [20]. It was previously the top-performing method on
the original SegTrack dataset [4], which only consisted of
five videos, all of which contained a single foreground. As
far as we are aware, only [8] evaluates on the new dataset
after it was updated in [19]. Scores of the previous work
are taken from [8]. Qualitative results are shown in Fig. 6.
Videos showing the results are also provided as the support-
ing material.

Discussion. Out of the four videos, the best result was
achieved for Bmx both quantitatively and qualitatively. Its
average IOU score is very competitive to [8]. For Bmx and
Hummingbird, which contain two foreground objects, our
results outperform [9] and [10]. However, note that [9] and
[10] assume only a single foreground object in a video. For
Soldier and Girl, which contain a single foreground, [9] and
[10] perform well. Our score for Soldier is worsened by
the segmented shadows: since the shadows move with the
soldier and the method is unsupervised, there is no way to
distinguish the shadows from the moving foreground. The
result for Girl leaves much to be desired. Since all the pix-
els in the same trajectory are assigned the same label, our
scores are also worsened by errors in TSP segmentation.
Visual inspection of the results shows that this is especially
true for Hummingbird and Girl.
Limitations. Since our method depends on the quality of
TSP segmentation, if TSP segmentation does not work ef-
fectively our method would not be effective as well. For
example, TSP segmentation was not effective for Cheetah
sequence in the SegTrack dataset, which exhibits very fast
motion with more than 40 pixels-displacements. It is very
difficult to track superpixels under such fast camera motion.
Out of more than 20000 unique trajectories, only eleven are
longer than five frames. Our method would not yield a good
result on such videos.

4 Conclusion

In this paper, we propose a new approach to unsupervised
video segmentation based on trajectories of temporarily co-

herent superpixels. We cast the segmentation problem as a
trajectory labeling problem with novel potential functions,
which we minimize using a two-step optimization method.
The proposed method is evaluated on a subset of the stan-
dard SegTrack benchmark and it can be seen that the algo-
rithm allows more robust segmentation of the foreground
that is static in some frames.
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