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Abstract

This paper deals with image segmentation when the
image consists of uniform background (b.g.) and uni-
form foreground (f.g.) with noise. We formulate this
problem into the joint minimization of MRF energy
with respect to a label image and density parameters
corresponding to f.g. and b.g., and solve it exactly in
reasonable computation time. The proposed method ef-
ficiently solves the joint minimization by utilizing the
novel property that multiple minimizations of MRF en-
egy, corresponding to different combinations of density
parameters for b.g. and f.g., can be solved by a single
total-variation minimization. In addition, we also ex-
tend the proposed method to the case where label images
together with density values corresponding to multiple
smoothing (regularization) parameters can be obtained
exactly and simultaneously with a much shorter compu-
tation time compared with the trivial exhaustive search.

1 Introduction

Image segmentation aims at dividing an image into
target regions (foreground, f.g.) and the others (back-
ground, b.g.). It is an important step for various im-
age analysis tasks. This problem can be formulated as
an optimization problem that defines an energy func-
tion and minimizes it. In particular, the optimization
method based on MRF model is robust against noise,
because it takes the correlation between adjacent pixels
into account. The graph cut technique [2] can obtain a
global optimum solution of the optimization problem
in polynomial time, and has been actively studied in
recent years. Alternatively, Tayama and Kudo [1] has
proposed a simple continuous optimization framework
using convex relaxation and subgradient method.

In the MRF-based image segmentation, a user is re-
quired to input three parameters, namely, two mean
density values corresponding to f.g. and b.g., and a
smoothing (regularization) parameter. In many cases,
however, these values are unknown, and we must esti-
mate them using only a given image in an unsupervised
way. In this paper, we propose a new image segmenta-
tion method, which is able to estimate the parameters
without any a priori information (in an unsupervised
way) under the assumption that the density values cor-
responding to f.g. and b.g. are uniform.

2 Image segmentation

Image segmentation can be considered as a problem
of assigning a binary label {0, 1} to each pixel of a

given image y⃗ ∈ RN and outputting a label image x⃗ ∈
{0, 1}N .
The image segmentation is often solved as an op-

timization problem of minimizing an energy function
designed based on the MRF model. The energy func-
tion of segmentation is defined as follows, when f.g. and
b.g. have constant densities.

f(x⃗) = (1− β)
1

2

∑
u∈V

gu(xu) + β
∑

(u,v)∈E

huv(xu, xv),

(1)

where V is a set of pixels, E is a set of pairs of adja-
cent pixels, and xu is a label of pixel u. The first term
is called the data term, which evaluates similarity be-
tween the density of each pixel in the measured image
and the mean density corresponding to each region,
i.e. f.g. and b.g.

gu(xu) =

{
|yu −m0|2 (if xu = 0)

|yu −m1|2 (if xu = 1)
(2)

= |yu −m0|2(1− xu) + |yu −m1|2xu,

where yu is the density of pixel u in the measured im-
age, (m0,m1) are means of density values correspond-
ing to b.g. and f.g. The squared error between yu and
the respective mean m0 (or m1) is used as an energy
value. The second term is known as the smoothing
(regularization) term, which can be explicitly written
as follows.

huv(xu, xv) = wuv ×
{
0 (if xu = xv)

1 (if xu ̸= xv)
(3)

= wuv|xu − xv|

wuv =
1

dist(u, v)
(4)

The data term focuses on only the density value of each
pixel, so that it generates a degraded noisy segmenta-
tion result. The aim of smoothing term is to reduce the
influence of degradation by using the assumption that
adjacent pixels are likely to have the same label. The
parameter β ∈ (0, 1) in eq. (1) is a hyper-parameter to
adjust the strength of each term.

2.1 Unsupervised estimation of density parame-
ters (Scenario 1)

In the above explanation, when solving the energy
minimization problem, we assumed that the measured
image y⃗, the smoothing parameter β, and the density
parameters (m0,m1) corresponding to b.g. and f.g. are
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given by a user. In many cases, however, (m0,m1)
are unknown. Therefore, in the conventional segmen-
tation methods, they need to be estimated by using
some a prior information related to the density values.
In [6], Boykov and Jolly used the histogram of mea-
sured image, where (m0,m1) were estimated by using
sets of pixels called ”seeds” given by the user. In [7],
Zagrouba et al. proposed an automatic segmentation
method dedicated for flower images using some spatial
information. Then they estimated the color distribu-
tion and segmented it precisely. On the other hand,
Otsu’s method [9], which is a classical binary image
segmentation method, determines an optimum thresh-
old value from the histogram of measured image and
performs the segmentation, where it is not necessary
to input (m0,m1). However, because Otsu’s method
does not take the correlation between adjacent pix-
els into account, the segmented result is significantly
affected by the noise in measured image. Therefore,
in this work, we propose a segmentation method that
can reduce the influence of noise without using a pri-
ori information such as the seeds and the user’s input
of (m0,m1). To perform the segmentation without
(m0,m1), we formulate the problem as the following
joint minimization of label image x⃗ and the density
parameters (m0,m1).

min
m0,m1

min
x⃗

f(x⃗) (5)

By solving minx⃗ f(x⃗) for all candidates of (m0,m1) val-
ues and taking the minimum among all the obtained
energy values, we can exactly obtain the solution of
eq. (5). However, this exhaustive search method is in-
feasible, because, when the number of image gray lev-
els G is 256, there exist

(
G
2

)
= 32640 combinations of

(m0,m1). Since the conventional MRF segmentation
already involves an iterative computation, the exhaus-
tive search method is not a practical way to perform
the unsupervised segmentation.

2.2 Generating segmentations with multiple
smoothing parameters (Scenario 2)

In addition, a resonable value of smoothing param-
eter β is also non-obvious. In many cases, the value of
β is determined by trial-and-error, i.e. the segmenta-
tion is performed with a number of β values and the
best value is selected by the user. However, it is inef-
ficient to perform the segmentation many times until
getting a satisfactory result. In this work, we also pro-
pose a method which generates multiple segmentation
results corresponding to a number of different β values
simultaneously in an efficient way.

In the left part of this paper, we refer the segmen-
tation for a single smoothing parameter β (given by
the user) to as Scenario 1, and the one which produces
multiple segmentation results for a number of β values
to as Scenario 2.

3 Proposed method

3.1 Total variation and parametric maximum
flow

The proposed segmentation method utilizes the To-
tal Variation (TV) minimization as a key tool [3–5].

The TV is normally used as a regularization term to
denoise an image contaminated with noise.

TV(x⃗) =
∑

(u,v)∈E

|xu − xv| (6)

f(x⃗) = β TV(x⃗) +
1

2
∥x⃗− y⃗∥2, (7)

where eq. (6) is the TV term. By minimizing the en-
ergy function of eq. (7), the denoised image x⃗ can be
obtained from the degraded image y⃗. It is well-known
that this problem can be solved efficiently by using the
so-called Chambolle’s projection algorithm [4, p.316
Algorithm 1].
If J(u⃗) is the TV term, the following proposition

holds.

Proposition 1 ( [3, p.292 Proposition 3.3]) Let
g⃗ ∈ RN and let u⃗ ∈ RN be the (unique) solution of

min
u⃗∈RN

λJ(u⃗) +
1

2
∥u⃗− g⃗∥2. (8)

Then, for all z > 0, the characteristic functions of
the superlevel sets Ez = {u ≥ z} and E′

z = {u > z}
(which are different only if z ∈ {ui, i = 1, . . . , N}) are,
respectively, the largest and smallest minimizer of

min
θ⃗∈{0,1}N

λJ(θ⃗) +
N∑
i=1

θi(z − gi). (9)

Since eq. (8) can be easily solved by Chambolle’s al-
gorithm, the solution of eq. (9) (binary problem) can
be obtained by solving eq. (8) using Chambolle’s al-
gorithm followed by performing the thresholding to its
output u⃗ with an appropriate threshold value z.

3.2 Transform of energy function in image seg-
mentation

Let md be the difference between m0 and m1, and
ms be the addition of them, i.e. md = m0 − m1 and
ms = m0 +m1. By substituting them into eq. (1), we
obtain

f(x⃗) = (1− β)md

∑
u∈V

xu(
ms

2
− yu) + constant

+ β
∑

(u,v)∈E

|xu − xv|. (10)

We define a new energy function by eliminating the
constant term and dividing it by (1− β)md as

fB(x⃗) =
β′

md

∑
(u,v)∈E

|xu − xv|+
∑
u∈V

xu(
ms

2
− yu),

(11)

where β′ is β/(1− β).
We note that the smoothing term in eq. (11) is the

TV term. Therefore, from Proposition 1, the solution
of eq. (11) can be obtained by thresholding the min-
imum solution of the following TV problem with the
threshold value ms/2.

fR(w⃗) =
β′

md

∑
(u,v)∈E

|wu − wv|+
1

2
∥w⃗ − y⃗∥2 (12)
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3.3 Proposed algorithms

Let us consider the case where we would like to seg-
ment an image for various combinations of (m0,m1)
values simultaneously. From the discussion in Section
3.2., if the difference md is equal, their solutions can
be obtained simply by changing the threshold value
ms/2 for the same minimum solution of the TV prob-
lem arg min fR(w⃗). Using this novel property, because
the range of md is limited to 1, 2, . . . , G−1, we can ob-
tain all the solutions correponding to all combinations
of (m0,m1) values by the G − 1 TV minimizations,
i.e. the brute-force G(G − 1)/2 graph cut minimiza-
tions are not necessary.

Algorithm 1 Proposed method for Scenario 1

Input: A measured image y⃗ ∈ RN and a smoothing pa-
rameter β ∈ (0, 1)

Output: A label image x⃗∗ ∈ {0, 1}N
1: β′ ← β/(1− β)
2: for md ← 1 to G− 1 do
3: w⃗ ← Chambolle(y⃗, λ← β′/md）
4: for m0 ← 0 to G− 1−md do
5: m1 ← md +m0, ms ← m0 +m1

6: x⃗← Threshold(w⃗,ms/2)
7: em0,m1 ← fB(x⃗m0,m1)
8: end for
9: end for

10: (m∗
0,m

∗
1)← arg minm0,m1

em0,m1

11: return x⃗∗ = x⃗m∗
0 ,m

∗
1

Therefore, Scenario 1 can be solved very efficiently
by Algorithm 1. When we execute Chambolle’s pro-
jection algorithm multiple times, we could further ac-
celerate the computation by using the obtained dual
solution p⃗ as an initial dual vector to solve the next
problem with a different value of md. The exhaus-
tive search, i.e. the method to apply the conventional
method for all combinations of (m0,m1) values, re-
quires O(G2) computation time, whereas the proposed
algorithm requires O(G) time, if the computation time
of both minimizations, i.e. the graph cut and the TV
minimization, is O(1).

The method to solve Scenario 2 can be obtained from
Algorithm 1 as follows. In Algorithm 1, we substituted
the value of β′/md in the formulation of segmentation
by the single regularization parameter λ when apply-
ing Chambolle’s algorithm. Since λ is a constant when
the ratio of β′ and md is same, i.e. λ = β′/md, each x⃗
obtained by Algorithm 1 can be regarded as a common
solution to multiple different values of β. The method
to solve Scenario 2 is shown in Algorithm 2. It can
reduce O(nG2) computation time to O(G), where n
is the number of β for which the user would like to
obtain the segmentations. In implementation, in or-
der to solve the lost correspondence between md and
(m0,m1) arising due to the discretization, we approx-
imate it by neighboring interpolated values.

4 Experimental results

We implemented Otsu’s method (with no smooth-
ing term), the exhaustive minimization method (using
Tayama’s continuous optimization approach [1] to ob-
tain each segmentation), and the proposed methods to

Algorithm 2 Proposed method for Scenario 2

Input: A measured image y⃗ and a set of smoothing pa-
rameters {βk}nk=1 in ascending order

Output: Label images {x⃗∗
k}nk=1

1: for k ← 1 to n do
2: β′

k ← βk/(1− βk), ck ← β′
k/β

′
1

3: end for
4: for m′

d ← 1 to G− 1 do
5: w⃗ ← Chambolle(y⃗, λ← β′

1/m
′
d）

6: for ms ← m′
d to 2(G− 1)−m′

d do
7: x⃗← Threshold(w⃗,ms/2)
8: for k ← 1 to n do
9: for md in integers with ckm

′
d as the nearest do

10: m0 ← (ms +md)/2, m1 ← (ms −md)/2
11: if (m0,m1) ∈ range search then
12: em0,m1,k ← fB(x⃗m0,m1 , β ← βk)
13: end if
14: end for
15: end for
16: end for
17: end for
18: for k ← 1 to n do
19: (m∗

0k,m
∗
1k)← arg minm0,m1

em0,m1,k

20: end for
21: return {x⃗∗

k = x⃗m∗
0k

,m∗
1k
}nk=1

various images, all of which consist of 256×256 pixels
and 256 gray levels. All density values were normalized

to [0, 1]. We used the Jaccard Index |A∩B|
|A∪B| [8] to eval-

uate accuracy of segmentation. The implementation
parameters of Chambolle’s algorithm in the proposed
method were selected as δt = 1/8 and tol = 1/64 [4].

(a) ei image (b) Otsu’s method (c) Prop. for S1
β = 0.05

(d) Prop. for S1
β = 0.10

(e) Exhaustive
β = 0.05, G = 32

(f) Exhaustive
β = 0.05, G = 64

Figure 1: Experimental results for ei image.

We performed an experiment to evaluate validity
and execution time of the algorithms for Scenario 1.
Figure 1 and Table 1 show the experimental results
for image “ei”(1a), which has density values (m0 =
100,m1 = 200) and was degraded with independent
Gaussian noise. Since the execution time of exhaus-
tive method was extremely long, we implemented it by
reducing the number of gray levels in the search space
to 32 and 64 (from 256). It can be observed that the
proposed method (1c, 1d) removed the effect of seg-
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Table 1: Experimental results for ei image. J.I. denotes
the Jaccard index with the ground truth. ET denotes
the execution time.

(m∗
0,m

∗
1) J.I. ET (s)

Otsu (1b) - 0.5128 0.13
Prop. for S1 (1c) (100, 196) 0.9837 22.71
Prop. for S1 (1d) (99, 195) 0.9300 20.56
Exhaustive (1e) (104, 192) 0.9855 668.40
Exhaustive (1f) (100, 196) 0.9856 2866.60

mentation errors due to the noise compared with the
result of Otsu’s method (1b). Although the results of
exhaustive method (1e, 1f) are almost same as that of
the proposed method (1c), its execution time was very
long. Considering that the complexity of exhaustive
method is O(G2), its computation time operated with
G = 256 is likely to be 4.6× 104(s), which is about 13
hours.

(a) fept image (b) fept, Otsu (c) Noised image

(d) Prop. for S1
β = 0.0020

(e) Prop. for S1
β = 0.0079

(f) Prop. for S1
β = 0.0158

(g) Prop. for S2
β = 0.0020

(h) Prop. for S2
β = 0.0079

(i) Prop. for S2
β = 0.0158

Figure 2: Experimental results for fept image.

In practical use of image segmentation, it is neces-
sary to select an appropriate value of β in some way.
Here, we performed an experiment of Scenario 2, in
which multiple segmentation results with a number of
different β are computed and the user finally selects
the best one. We compared the proposed efficient Al-
gorithm 2 and the exhaustive method to repeat Al-
gorithm 1 for Scenario 1 with many candidate values
of β. Figure 2 and Table 2 show the experimental re-
sults for image “fept”(2a), which is a transmission elec-
tron microscope (TEM) image of iron-platinum (Fe-
Pt) nanoparticles. The corresponding noised image is
shown Figure 2c. To simplify the implementation, can-
didate values of βk (k = 1, 2, . . . , n) were given so that
β′
k are integer multiples of β′

1, i.e. β′
k = kβ′

1. We
obtained accurate segmentations from the degraded
image by selecting an appropriate parameter value

Table 2: Experimental results for fept image. J.I. de-
notes Jaccard index with the result of Otsu’s method
for non-degraded image (2b) as the ground truth.

Prop. for S1 Prop. for S2
βk β′

k (m∗
0,m

∗
1) J.I. (m∗

0,m
∗
1) J.I.

0.0020 0.002 (48, 109) 0.8522 (48, 109) 0.8522
0.0040 0.004 (49, 107) 0.9120 (49, 107) 0.9122
0.0060 0.006 (51, 106) 0.9328 (50, 106) 0.9308
0.0079 0.008 (51, 106) 0.9340 (51, 106) 0.9344
0.0099 0.010 (51, 106) 0.9313 (51, 106) 0.9323
0.0119 0.012 (50, 105) 0.9216 (51, 105) 0.9254
0.0138 0.014 (51, 106) 0.9226 (52, 105) 0.9250
0.0158 0.016 (52, 105) 0.9172 (52, 105) 0.9199

β = 0.0079 in the both compared methods. Compar-
ing the two methods, the segmentation results corre-
sponding to the same β value showed a high similar-
ity. On the other hand, the total execution time was
126.41(s) for the exhaustive method and 53.71(s) for
Algorithm 2, which demonstrates that Algorithm 2 is
more efficient.

5 Conclusion

In this paper, we proposed an image segmentation
method, which does not require inputting density pa-
rameter values (m0,m1), under the assumption that
b.g. and f.g. have uniform densities degraded with ad-
ditive noise (Algorithm 1). Furthermore, we also pro-
posed a method to efficiently generate multiple seg-
mentation results corresponding to a number of candi-
date β values simultaneously (Algorithm 2).
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