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Abstract

Xylem vessels play a pivotal role in plant adapta-
tion to drought stress. In this paper, we propose a
novel framework that associates automatic segmenta-
tion of xylem vessels with its morphological features as
a quantitative proxy to predict drought stress response
(DSR). We develop an image processing pipeline that
comprises of low level processing which enables high-
throughput detection of xylem vessels. With no prior
information about its size and location, the proposed
detection methodology gives an accuracy of 98%. The
labelled data for DSR are either not available or are
subjectively developed, which is a low-throughput and
error prone task. We resolve this problem by employing
simplex volume maximisation (SiVM) algorithm. The
convex representations obtained from SiVM for each
xylem in microscopic images based on its shape factors
are aggregated to get an automated scoring of the whole
plant. Bhattacharya distance is then employed to ob-
tain the divergence of these responses w.r.t. the control
group. The proposed framework successfully captures
the phenotypic difference between MTU-1010 (drought
susceptible rice cultivar) and Sahbhagi Dhan (drought
tolerant rice cultivar).

1 Introduction

Drought is one of the major abiotic stress factors
that limits crop productivity [1]. In order to develop
drought tolerant cultivars, researchers notably rely in
part on collection of specific characteristics related to
plant structure and function [1]. These measurable at-
tributes are called phenotypic traits. Root anatomical
traits, in particular, xylem vessels have an important
effect on plant functions, including acquisition of nu-
trients and water from the soil and thus, is of major
interest for understanding plant adaptation to drought
stress [2]. Quantification of drought stress response
(DSR) based on xylem vessels provide researchers a di-
rect selection criteria of drought tolerant cultivars [2].
This requires high-throughput analysis of large volume
of microscopic data. But, in recent studies [3, 4, 5], the
use of manual or semi-automated approaches for exam-
ple manually segmenting tissue regions and calculating
approximate xylem diameter or areas by manually fit-
ting polygons using existing tools ImageJ [6], RootScan
[7] and Nikon NIS elements, creates a bottleneck. In
addition, scoring the level of drought stress based on
these image based features is a complex problem due
to the differential response of cultivars after drought
stress induction and its variance among the replicates

of a cultivar. Thus, well defined labels for the corre-
sponding digital traits are either not available or are
subjectively created, which is again a low-throughput
and often error prone task.

Machine learning approaches can be used to dis-
cover the underlying principles that are too complex to
model directly, in the absence of a well defined math-
ematical representation of DSR [8]. But due to the
aforementioned reasons that result in lack of pheno-
typic data, xylem vessels have not yet been utilized to
model the behaviour of drought tolerant and suscepti-
ble cultivars, that will assist in breeding cultivars with
higher water use efficiency [7].

To resolve these issues, we propose a novel auto-
mated framework that can be employed to character-
ize drought stress response of various cultivars based
on xylem vessels. The main contributions of this paper
are as follows:

(1) Existing softwares employed by authors [3, 4, 5]
to extract the phenotypic traits offers manually
controlled tools, which makes the detection and
extraction of the traits laborious and time con-
suming. They also limit the types of traits
needed to quantify subtle but statistically signif-
icant changes in the morphology of xylem vessels
in response to drought. Thus, in the first step
we develop an image processing pipeline for auto-
matic segmentation of xylem vessels and quantify
its morphology using shape factors [9].

(2) In the next step, we identify latent drought clus-
ters and their corresponding convex represen-
tation based on shape factors of the detected
xylem vessels using simplex volume maximisation
(SiVM) [10]. The progressive stages of drought
are then quantified by aggregation of the convex
representation of each xylem vessel in the image.

(3) We provide a novel index to quantify relative
drought response between different cultivars using
Bhattacharya distance [11] as a measure of diver-
gence of these drought stages w.r.t to the control
group.

The rest of the paper is organised as follows: In sec-
tion 2 the experiment protocol for data acquisition is
elucidated, section 3 explains the proposed framework,
in section 4 the results are discussed and section 5 con-
cludes the paper.

2 Dataset

Two series of drought experiments were conducted
on rice pots during the kharif season of 2014 and
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2015 at Indian Agricultural Research Institute, New-
Delhi, India. In 2014, each genotype (Sahbhaghidhan,
IR64 and MTU-1010) was divided into three groups
(two replicates each) with differing irrigation intensi-
ties i.e. well-watered, reduced watered and unwatered.
In 2015, each genotype (Pusa-44, NL-44 and CR262)
was divided into three replicates of reduced watered
and one of well-watered plants. These plants were har-
vested by gently excavating soil to obtain main root
systems on each observation day for a period of 5 days.
The tip of the primary roots as described by Bashar et.
al [12] was used to obtain root sections. The images
of these sections containing the stele region were taken
with a scanning electron microscope (model EVO 50,
Zeiss, UK).

3 Methodology

The input to the proposed framework is time series
microscopic images of stele cross-sections. It mainly
comprises of four steps, explained in the following sub-
sections.

3.1 Pre-processing step

The first step involves the isolation of stele region
from the background. This can be achieved by thresh-
olding. But the threshold may differ for each im-
age which requires empirical estimation. Thus, Otsu's
method [13] was employed for automatic threshold se-
lection and to obtain the corresponding binary image.
This algorithm groups pixels into two classes, fore-
ground (i.e. the stele and any debris) and background,
by minimizing the intra-class variances of these two
classes. Prior to thresholding, Contrast Limited Adap-
tive Histogram Equalisation (CLAHE) [14] was em-
ployed to enhance the brightness difference between
stele and the background. The binary image obtained
from Otsu's thresholding comprises of the stele region,
scale bar and isolated noise components. To obtain the
stele, connected components labelling [13] was utilized.
Since in the investigated binary image, stele comprises
of majority of the foreground pixels, the label corre-
sponding to maximum number of pixels was extracted.

3.2 Detection of xylem vessels

The main part of the xylem detection method uses a
border following algorithm introduced by Suzuki [15].
Border between a connected component of pixels that
correspond to foreground (pixel value = 1), and a con-
nected component of pixels that belong to hole (pixel
value = 0) is described by the chain codes. Then topo-
logical structures of the image are extracted and these
structures are described by contours. For each contour
detected using this algorithm, the corresponding min-
imum enclosed circle (radius and centre) was also col-
lected. Since the binary image representing the stele
contains both xylem and meta-xylem vessels as con-
tours, both are segmented from this algorithm. Xylem
vessels were then identified within the stele based on
their size, since they are generally larger than the meta-
xylem. The ranked list of the radius of minimum en-
closed circles was created for each image and the con-
tours above the maximum step difference are labelled
as xylem vessels.

3.3 Feature Extraction

While Kadam et al. [3] and Burton et al. [4] ex-
tracted the mean xylem vessel area, Haworth et al.
[5] extracted the frequency distribution of diameter of
xylem vessels as digital traits. These extracted traits
are dependent on the magnification of the microscopic
images. To eliminate the magnification as an input pa-
rameter to the framework, shape factors were employed
to characterise the morphology of detected xylem ves-
sels. The shape factors considered in this work are the
following:

(1) Aspect Ratio (AR) of the contour is a function of
the largest diameter (dmax) and the smallest di-
ameter (dmin) orthogonal to it: AR =dmin/dmax.

(2) Circularity (CR) is defined in terms of the perime-
ter P and the area A of the contour: CR=4πA/P 2.

(3) Solidity (S) is the measurement of the overall con-
cavity of the contour. It is a function of contour
area (A) and convex hull area (Ac): S=A/Ac.

(4) Roundness (R) is defined as a function of con-
tour area (A) and the largest diameter (dmax): R
=4A/πd2max.

These shape based features contains complementary
information about the morphology of xylem vessels.
Thus, they were fused at the feature level to quantify
drought stress response, as explained in the next sub-
section.

3.4 Unsupervised labelling to identify different
stages of drought stress response

Well-defined labels to denote different drought stress
responses (DSR) are not available or obtained from the
experts which introduces subjectivity. Hence, the ob-
jective of the unsupervised method was to group simi-
lar phenotypic traits to categorize DSR and obtain in-
terpretable representation of the patterns in the phe-
notypic data. Clustering approach was employed for
the unsupervised response analysis.

The goal of clustering is to find a set of k basis vec-
tors expressed as W ∈ Rd×k from the d-dimensional
data-set with n samples represented as V ∈ Rd×n with
rank r ≤ min(d, n). The coefficient matrix H ∈ Rk×n

is defined as the belongingness of data points to each
centroid. This can be cast as a matrix factorisation
task, and factor matrices W ∈ Rd×k and H ∈ Rk×n

are determined using following minimisation problem:

min
W,H

‖V −WH‖, (1)

where ‖ · ‖ denotes matrix norm and k ≤ r.
Common approaches to achieve this factorisation

include Principal component analysis (PCA) [16], k-
means [16], Non-negative Matrix Factorisation (NMF)
[16], fuzzy k-means [16] and recently developed SiVM.
Although these methods minimise the same criteria,
they differ in terms of constraints and produce differ-
ent matrix factors. PCA constraints W with uncorre-
lated basis vectors, k-means computes W as centroids
of the clusters and H comprises of unary column vec-
tors and NMF assumes V,W and H to be non-negative
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Figure 1. Automatic detection of Xylem Vessels

matrices. On the other hand, SiVM calculates the
basis vectors by fitting a simplex with the maximum
volume to the data. SiVM selects the basis vectors
from the data matrix V. Thus, the matrix W is de-
fined as W = VG where, G ∈ Rn×k and is restricted
to unary column vectors and H is restricted to con-
vexity. We compared these commonly used clustering
algorithms [8]: k-means, NMF, PCA, fuzzy k-means
and SiVM on the data matrix V, where every column
Ci = [AR, R, CR, S]T and i = 1, 2, · · · , n to obtain a de-
scriptive representation of drought responses in terms
of the basis vectors. These are evaluated based on their
interpretability and separability for different stages of
drought.

4 Results

In this section, we present both quantitative and
qualitative results obtained by the proposed frame-
work. The result of automatic detection of xylem ves-
sels in microscopic images is shown in Figure 1. Mi-
croscopic images from both the experiments were em-
ployed to obtain the accuracy of proposed methodol-
ogy, which was calculated to be 98%. Since xylem ves-
sels are much larger in size than the meta-xylems, they
were not misidentified. This remains valid even for de-
formed xylem vessels under drought stress, as the ra-
dius of the minimum enclosing circle of these deformed
vessels was used in the determination of maximum step
difference. But it was observed that for the images with
sheared cross-sections, vessels were not clearly defined,
and the portions of the cross-sections appeared com-
pressed. This resulted in false positives as some of the
contours in the outer border were detected as xylem.

From the detected xylem vessels, different shape fac-
tors were extracted and fused to obtain compact rep-
resentation of the vessel’s morphology. The first two
components of this feature vector is shown in supple-
mentary Figure 1 for Sahbhaghi Dhan under control
and third day of drought. To obtain the objective
scoring of the drought responses (V), PCA, NMF, k-
means and SiVM methods were compared. Since, it
was observed that the results of both k-means and
fuzzy k-means were similar, we included only k-means
results. The drought classes/basis vectors were fixed to
k = 3, since the cultivars were subjected to three types
of drought treatments. Figure 2 shows the basis vec-
tors W computed from the aforementioned methods.

The basis vectors obtained using PCA lacked physi-
cal meaning since its components have negative values
that do not correspond to actual drought responses
(shape factors lies between 0 and 1). NMF gave char-
acteristics parts rather than the archetypal behaviour.
It was observed that the factorisation obtained using
k-means and SiVM resulted in interpretable basis vec-
tors. From Figure 2(c) and (d) the first basis vector
corresponds to control group (as its components corre-
sponds to perfect circular xylems), second is labelled as
mild stress response and third vector as severe stress
response (as the deviation from circular shape is the
maximum). But more distinctive basis vectors charac-
terising drought stages were obtained using SiVM as
compared to k-means, since it provides data represen-
tation as a convex combination of extreme data points.
Also, the belongingness matrix H in k-means com-
prises of unary column vectors. Thus, each response is
associated with only one class. Since drought is not a
discrete process, the convex representation of drought
response obtained using SiVM provides a better repre-
sentation of this continuous change. Thus, SiVM was
further employed to quantify DSR. The convex repre-
sentation for each xylem vessel present in the image
was obtained. These local states of drought stress re-
sponse were then aggregated to obtain a histogram of
class frequencies Hd, which characterises the response
of the whole plant. Supplementary Figure 2 contrasts
Hd of Sahbhagi Dhan under control and second day of
drought.

To study the divergence of the response of rice cul-
tivar under drought condition based on Hd, control
group was used as a reference. This divergence was
computed using Bhattacharya distance [11] for each
observed day. We then tested the hypothesis that for
the same drought treatment, various cultivars respond
differently based on this divergence measure. Linear
regression model was employed to quantify this dif-
ference. The functional form of the linear regression
model between the day of drought stress (x) and the
divergence (y) is given by:

y = β0 + β1 · x+ β2i · i+ β3i · x · i (2)

where i is the genotype coded as 0/1. Student's t-
test was used to detect statistically significant differ-
ences in the variation of drought response. From the
model (supplementary Figure 3), it was observed that
the slope showed statistical differences between the two
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Figure 2. Drought response classes obtained using k-means, NMF, PCA and SiVM

Figure 3. Linear regression models for genotypes
MTU-1010 and Sahbhagi Dhan

genotypes, thus providing an index to quantify rela-
tive drought response between different cultivars. In
Figure 3 the divergence of Sahbhaghi Dhan (drought
tolerant cultivar) is more as compared to that of MTU-
1010 (drought susceptible cultivar). This demonstrates
that morphological changes in the xylem vessels as a
response to drought is more in Sahbhaghi Dhan than
MTU-1010. These results show the potential of our
framework to characterise the response of unknown
cultivars using the response of known cultivars and se-
lection of the drought tolerant cultivars based on it.

5 Conclusion

In this article, we presented a novel framework that
provides an automated description of drought stress
using SiVM based on fusion of shape based features of
xylem vessels. The proposed method also captured the
phenotypic difference between a drought susceptible
rice cultivar (MTU-1010) and a drought tolerant rice
cultivar (Sahbhagi Dhan). This result demonstrates
the potential of this approach to quantify the relative
drought responses between different cultivars, which
can further be used for desired trait selection. The
findings contribute to the ongoing studies to predict
drought stress based on phenotypic traits. We plan to
conduct similar experiments to quantify other pheno-
typic traits of different rice genotypes and quantify the
relation between them. This will enable high through-
put characterisation of different drought mechanisms
of rice.
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