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Abstract

Improvement in medical imaging technologies has made
it possible for doctors to directly look into patients’ bodies
in ever finer details. However, since only the cross-sectional
image can be directly seen, it is essential to segment the
volume into organs so that their shape can be seen as 3D
graphics of the organ boundary surfaces. Segmentation is
also important for quantitative measurement for diagno-
sis. Here, we introduce a novel higher-precision method
to segment multiple organs using graph cuts within medical
images such as CT-scanned images. We utilize supervox-
els instead of voxels as the units of segmentation, i.e., the
nodes in the graphical model, and design the energy func-
tion to minimize accordingly. We utilize SLIC supervoxel
algorithm and verify the performance of our segmentation
algorithm by energy minimization comparing to the ground
truth.

1 Introduction

Recent development of precision medical diagnostic
tools have improved the precision and quality of diagnosis
by doctors in clinical settings. Specifically, improvement in
medical imaging technologies such as Computed Tomog-
raphy (CT) and Magnetic Resonance Imaging (MRI) has
made it possible for doctors to directly look into patients’
bodies in ever finer details. However, although medical im-
ages are volumetric, only the cross-section can be directly
seen. Thus, it is essential to segment the volume into or-
gans so that their shape can be displayed and be seen as
3D graphics of the organ boundary surfaces. Segmentation
is also important for quantitative measurement for diagno-
sis. For instance, the size of organs offers crucial diagnostic
information to doctors that can be compared over time.

One popular approach for medical image segmentation is
energy minimization methods such as graph cuts[1], where
the problem is treated as labeling of each volumetric pixels
(voxels) as one of possible organs. That is, each voxel in
the volumetric image is classified into one of the organs
such as heart and lung, thereby characterizing each segment
as those voxels labeled by a particular label. This is done
by finding a labeling that minimizes a function called the
energy, which assigns a real number for each labeling that
assesses the quality of the labeling so that the lower the
value is, the better the quality of the segmentation is. In
this paper, we use the X-ray CT images such as shown on
the left of Fig. 1, which consists of slices of 2D images.

In the multiple-organ segmentation methods [2] utiliz-
ing energy minimization, typically every voxel is labeled.
Although there is smoothing terms that prevent the result-
ing segmentation from becoming too rough, it still often al-
lows isolated voxels labeled differently from its neighbors,
which cannot be true segmentation.

Figure 1. Left: Stacked CT slices can be seen as a 3D
volumetric image. Right: the result of segmentation,
which is also a 3D image of labels.

One way to alleviate this problem is to use supervoxels.
A supervoxel is a set of voxels with common properties
such as close intensities or voxel values. By using them as
the unit to be labeled, multiple voxels are treated as a group
to be labeled in the same way. As examples of segmentation
methods using supervoxels, a multiple-object segmentation
in 3D CT images [3] and a technique for detetion of mi-
tochondria in electron microsscopy images [4] have been
proposed.

In this paper, we utilize supervoxels and design the en-
ergy function for such a case, thereby solving the prob-
lem of rough segmentation and improve the precision of
multiple-organ segmentation.

2 Energy Minimization

First, we explain the previous energy minimization ap-
proach where individual voxels are labeled.

We denote the set of all voxels in the CT image by V ,
whereas v denotes the individual voxels in V . We denote
the CT value at voxel v by Xv , and the label assigned to
v by Lv ∈ L. The CT value at a voxel represents the rel-
ative absorption of X-ray by the tissue at that voxel, nor-
malized so that the value for the air is the lower limit of
−1000, and the value for water is 0. Let us denote by M
the number of the labels, including the one that represents
the background. Then X = (X1, · · · , XN ) is the CT value at
each voxel, while L = (L1, · · · , LN ) is the labels assigned
to each voxel, where N is the number of voxels in the CT
image.

The volume is segmented by MAP-estimation of the la-
beling random variable L by finding the labeling that maxi-
mizes the posterior probability P(L |X ) given the CT-value
random variable X . The L that maximizes P(L |X ) is ob-
tained by solving the following energy minimization prob-
lem [5]:

argmax
L

P(L |X ) = argmin
L

E(L; X ) (1)

The energy E(L; X ) consists of three terms as in (2): the
data term Edata(L; X ), the probabilistic atlas term Eatlas(L),
and the smoothing term Esmooth(L; X ).
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Figure 2. Previous method: voxel-based labeling
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Figure 3. Our method: supervoxel-based labeling

E(L; X ) =wdataEdata(L; X ) + watlasEatlas(L)+

wsmoothEsmooth(L; X ).
(2)

Here, wdata, watlas, and wsmooth are the weights for the terms,
which are the parameters we calibrate so that E(L; X ) is
minimized. We use graph cuts [1] to minimize the energy.

We define the terms in (2) as follows:

Edata(L; X ) =
∑
v∈V

f (Lv; Xv), (3)

f (Lv; Xv) = − log P(Xv |Lv), (4)

where P(x |l) is the conditional probability that CT value
at a voxel takes x when it is assigned label l which, as a
physical property, should be independent of position;

Eatlas(L) =
∑
v∈V

g(Lv), (5)

g(Lv) = − log P(v, Lv ), (6)

where P(v, l) is the prior probability that voxel v is assigned
label l; and

Esmooth(L; X ) =
∑

(u,v)∈C2

h(Lu, Lv, Xu, Xv), (7)

h(Lu, Lv, Xu, Xv ) =
0 (Lu = Lv)

1
|Xu−Xv |+1 (Lu , Lv),

(8)

where C2 is the set of all neighboring pairs.
Note that, in the experiments, the probabilities P(x |l)

and P(v, l) are estimated from training data by counting.

Figure 4. CT value is averaged over a supervoxel.

3 Energy Minimization on Supervoxels

Now, we modify the above method so that supervoxels,
instead of voxels, are labeled. Figs 2 and 3 illustrate the pro-
cesses in the two approaches, respectively. As explained in
the previous section, in the original, voxel-based labeling,
each voxel in the input 3D CT image is individually labeled,
so that the energy (2) is minimized.

In our method, we first oversegment the input 3D CT im-
age into supervoxels. Then we label the supervoxels using
graph cuts. Accordingly, the energy is defined in terms of
supervoxels, instead of voxels. Naturally, the definition of
the energy must be modified, as explained below.

The relationship between the voxels and the supervoxels
are as in (9) and (10):

V = S1 ∪ S2 ∪ S3 ∪ · · · ∪ SK, (9)
W = {S1, · · · , SK }, (10)

where Si (i = 1, · · · , K ) are supervoxels, which are sets of
voxels and W is the set of supervoxels that jointly covers
the whole set V of voxels, without overlaps.

We assign a label Λi ∈ L to each supervoxel Si (i =
1, · · · , K ) so that a modified energy D(Λ; X ) is minimized.
The energy D(Λ; X ) is defined similarly to (2), as a sum of
three terms:

D(Λ; X ) =udataDdata(Λ; X ) + uatlasDatlas(Λ)+

usmoothDsmooth(Λ; X ).
(11)

The three terms, the data term Ddata(Λ; X ), the atlas term
Datlas(Λ), and the smoothness term Dsmooth(Λ; X ) are de-
fined so that they make sense in terms of supervoxels, as
explained in the following.

3.1 Data Term

The data term Ddata(Λ; X ) is defined, as illustrated in
Fig. 4, by:

Ddata(Λ; X ) =
∑
S∈W

ϕ(ΛS; XS ), (12)

ϕ(ΛS; XS ) = − log P(XS |ΛS ). (13)

Here, ΛS is the label assigned to supervoxel S ∈ W , XS

is the average of the CT values at the voxels contained in
supervoxel S:

XS =
1
|S |
∑
v∈S

Xv, (14)

and P(XS |ΛS ) is the conditional probability (likelihood)
that supervoxel S’s average CT value is XS given it is as-
signed label ΛS . We take P(XS |ΛS ) to be the same as
P(x |l), since it should be independent of position.
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Figure 5. The prior probability that a label is assigned
to a supervoxel is the average of the voxels in the su-
pervoxel be assigned it.

Figure 6. The area (yellow) where two supervoxels,
consisting of three (red) and six (blue) voxels, respec-
tively, touch.

3.2 Atlas Term

The atlas term Datlas, as depicted in Fig. 5, corresponds
to the prior probability P(ΛS ) that supervoxel S is assigned
label ΛS , which is given by the average of the prior proba-
bilities that the voxels in S are assigned it. Thus, the term
is defined as:

Datlas(Λ) =
∑
S∈W

ψ(ΛS ), (15)

ψ(ΛS ) = − log P(ΛS ), (16)

P(ΛS ) =
1
|S |
∑
v∈S

P(v,ΛS ). (17)

3.3 Smoothness Term

In the voxel-based formulation, a voxel’s neighbor is
simple. Typically, six-, eighteen- or twenty-six- neighbor-
hood system is used. In our supervoxel-based case, the
arrangement of supervoxels is irregular: each supervoxel
has different shape and different number of neighbors and
the smoothness term must be designed accordingly. Here,
we take into account both the average CT values of neigh-
boring supervoxels and the area of the surface they touch.
As illustrated in Fig. 6, we define the smoothness term
Dsmooth(Λ, X ) as follows:

Dsmooth(Λ, X ) =
∑

S,T ∈W
η(ΛS,ΛT , XS, XT ), (18)

η(ΛS,ΛT , XS, XT ) =


0 (ΛS = ΛT )
AST · 1

|XS−XT |+1
(ΛS , ΛT ),

where S,T are neighboring supervoxels (i.e., they split at
least one pair of neighboring voxels) and AST is the area
they touch, which is defined as the number of neighboring
pairs (v, u) such that v ∈ S, u ∈ T .

Figure 7. Plot of the average Jaccard Index obtained
for 24 images using different relative weights and
SLIC size parameters. The horizontal line indi-
cates the performance by the baseline, voxel-based
method.

4 Experimental Validation

4.1 Method

We used 24 CT images for an experimental validation of
our method. We first cut out a box that roughly matches
using landmarks from each image, and then resized it to
209×158×258 voxel size. The 21 labels used are shown in
Table 1; there are labels for 20 organs and the background.

For each CT image, we learned the prior P(v, l) and the
likelihood P(x |l) from the other 23 images to determine
the energy function, and then used it to segment it. Simi-
lar leave-one-out scheme was used for the baseline voxel-
based algorithm.

We used the SLIC algorithm [6] for dividing the images
into supervoxels. The algorithm has two parameters: size
that controls the size of supervoxels and compactness that
controls the uniformity of their shapes. Here, we fixed the
compactness to 80 and tried three values (33, 43, 53) of size.

As for the weights for the three terms in the energy, we
fixed udata to 1, since only the relative weights matter and
udata cannot be zero since the result would have no relation
to the data if it were. We tried three values 0.5, 1.0, and 2.0
for uatlas and ten values 0.1, 0.2, 0.5, 1.0, 2, 0, 5.0, 10, 20, 50,
and 100 for usmooth. We compared the 24 segmentation re-
sults with that of the voxel-based results.

To assess the accuracy of the segmentation, we computed
the average of the Jaccard Index relative to the ground truth.
For the comparison with the result of the voxel-based base-
line, we used the weights wdata,watlas, and wsmooth that gave
the best results, which had the ratio of 100 : 1 : 700.

4.2 Results

Fig. 7 shows the plot of the average Jaccard Index ob-
tained for the 24 test CT images obtained with different rel-
ative weights and SLIC size parameters, compared with the
voxel-based baseline results, which is shown as the hori-
zontal line.

For our supervoxel-based method, on average the best
result were obtained when the SLIC size parameter was set
to 33 and the relative weight were udata : uatlas : usmooth = 1 :
0.5 : 5, when the average of the Jaccard Index was 0.8069.
In contrast the best result the baseline achieved was 0.7612.
Thus, our method outperformed the baseline by about 4%.

We show the results from two CT images in Fig. 8. We
can see that in these cases our method successfully detected
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Figure 8. Segmentation results for two CT images. The relative weight in the energy terms were udata : uatlas : usmooth =
1 : 0.5 : 5 and the SLIC parameters were compactness = 80 and size = 33.

the aorta that the baseline missed. Also, our method cor-
rectly labeled the stomach and the inferior vena cava, which
the baseline mislabeled. On the other hand, the result by
our method seems a little rougher than those of the base-
line, which is the result of labeling isolated supervoxels.

Table 1. Organ labels
Organ Label color
Background Black
Right lung Blue
Left lung Lime
Heart Red
Aorta Yellow
Esophagus Cyan
Esophageal lumen Magenta
Liver Blueviolet
Gallbladder Deeppink
Stomach or duodenum Green
Stomach or duodenal lumen Navy
Stomach or Duodenal contents Maroon
Spleen Orange
Right kidney Purple
Left kidney Sienna
Inferior vena cava Chocolate
Hepatic portal vein or Splenic
vein or Superior mesenteric artery Silver
Pancreas Brown
Bladder Pink
Prostate Olive
Uterus Teal

5 Conclusion

In this paper, we showed that the segmentation accuracy
measured by Jaccard Index relative to the ground truth can
be improved by using a supervoxel-based method in the en-

ergy minimization. Also, some problems with the voxel-
based approach, such as missing organs and misshaped seg-
ments could be alleviated.
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