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Abstract 

This paper presents results about image analysis ap-
plication for identification and classification of 
disintegration patterns upon weak rocks, clay-bearing 
rocks and Intermediate Geomaterials IGMs. The research 
was conducted in order to obtain a reliable method for 
field and laboratory because upon these materials, it is 
quite difficult to acquire unaltered samples due to the 
quick disintegration after the materials are exposed to 
environmental conditions. Thus, the application of image 
analysis and color changes produced by disintegration 
advance has shown reliable results to be used as an 
alternative method to replace the traditional human eye 
based classification charts. Several images were taken 
upon different disintegration states and environmental 
conditions and were correlated with changes in color 
channels, using colorimetric indices and statistical image 
descriptors. As a result, a disintegration classification 
method based on Image entropy and color changes was 
stated, the findings were validated and compared with 
results from traditional methods using both natural and 
artificial samples with controlled disintegration levels, in 
addition, Hyperspectral images, were used as well. 

1. Introduction 

Nowadays, Geologists and Geotechnical engineers are 
facing a great challenge to interpret the data retrieved 
from slopes with advanced stages of disintegration 
(Figure 1). The disintegration of weak rocks, soft rocks, 
very weak rocks or intermediate geomaterials IGMs oc-
curs quickly when they are exposed to climatic conditions. 
It makes characterization and quantification of these ma-
terials extremely difficult at different disintegration states, 
even upon laboratory controlled conditions. Commonly, 
disintegration assessments have been performed by 
means of observational processes compared to predefined 
disintegration patterns associated with different disinte-
gration states (Figure 2). These patterns are included in 
different classification schemes, which have been stated, 
founded on expert knowledge and empirical approaches 
according to experimental work made upon a specific 
type of rock or geomaterial. For instance, the slake dura-
bility rating SDR proposed by Erguler and Ulusay [1] is a 
classification chart developed to measure disintegration 
on clay-bearing rocks, it stated 6 disintegration states and 
their correspondent visual patterns based on the fracture 
frequency (𝜆) such as the presented on the (Figure 2). 
Fracture frequency (λ) is the inverse of fracture spacing 
and SDR = 100–100 ∗ λ. The chart was developed on 
laboratory and field-based observations of disintegration 

characteristics of different clay bearing rocks. It includes 
six rating classes, designated as I through VI, with their 
corresponding disintegration patterns, fracture frequency 
(λ) values, SDR values, and related information about 
other physical properties (Rincon, Shakoor et al.[2]). 
However, application of these disintegration classification 
systems is based on human observations and could be 
subjective by skills and abilities. Additionally, their ap-
plicability to laboratory samples is limited due to the 
material scale and high disintegration susceptibility be-
cause of its fast alteration. Hence, because of those 
uncertainties, the computer vision was used in this re-
search looking for an improvement in the classification 
process, applying tools widely used in other science fields. 
Thus, in this paper, the most relevant experiences and 
findings about computer vision application upon disinte-
gration assessment are summarized. 

 

 
 
 
 
 
 
 
 
Figure 1. The Same mudstone in different disinte-

gration states a) Low b) medium c) high. 

The majority of reported image applications related to 
geomaterials disintegration have focused on crack 
detection.The experimental work has been performed 
generally using homegeneous clay samples in slurry state, 
leaving beside hetereogeneous materials as the exhibited 
in Figure 1. Likewise, the studies have applied traditional 
segmentation algorithms based on gray scale transformed 
image, in order to correlate the results with different 
properties (i.e. plasticity, specific surface and water 
content). Nevertheless, in spite of the diversity of studies, 
textural features as voids and fine fragments related to 
disintegration process have not yet been adequately 
considered in image analysys. It is due to the interest in 
principal fracturing systems detection, by means of 
preprocessing techniques for removing the clods or the 
islands. Referring to disintegration quantification, these 
textural features play an important role; consequently, the 
abovementioned technics using a grayscale-transformed 
image are not enough to get a reliable quantification. 
Therefore, an image analysis process that comprises color 
structure changes and alterations on the images was 
required in order to develop a new methodology im-
proving segmentation outcomes and a better 
disintegration assessment. 
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Figure 2. Example of disintegration patterns from 

SDR chart a) low b) high. 

2. Color alterations on visible images re-
lated to disintegration of weak rocks 

Color has been defined in different ways along the 
history. Despite color has been widely studied in several 
science fields, nowadays its definition is not satisfactory 
at all (Viet, [3]). Color’s definition has been widely linked 
with human perception through its senses. Thus, it set the 
color notion as the result of light interaction with a certain 
body, and how a human being perceives that interaction. 
So, considering the relationship between the geomaterial 
disintegration advance and color changes, it would be 
possible to discern that the resultant color on a disinte-
grated material is affected by textural features increase, 
the color alterations on geomaterial surface can come in 
two ways: changes on voids or changes on spots. The 
problem is that these alterations are not easy to quantify 
using traditional human eye classification approaches 
such as Munsell charts (Munsell Color Firm, [4]). Thus, in 
order to appreciate how color alterations are, different 
experimental artificial vision setups were developed upon 
laboratory samples under controlled conditions, other to 
samples exposed to natural climate conditions and other 
on cut slopes in the field. The analysis was made at global 
or local image level, assessing the changes on different 
color descriptors, and looking for disintegration feature 
related anomalies on them. On the other hand, different 
artificial samples were created using Modelling oil-based 
clays because they are not affected by moisture changes 
caused by evaporation, are malleable, and have color 
stability; these models were used to simulate different 
disintegration patterns and conditions and color changes 
produced by disintegration alterations (Figure 3). 

 
Hence, based on all experimental results, a clear 

change on the surface dominant color structure was iden-
tified between different disintegration stages on these 
types of materials and this alteration is well mapped by 
blue channel histogram changes. For instance, Figure 3 
shows how surface affectation increases change the re-
sultant blue tones distribution on the accumulated pixel 
count histograms for two different clay models; this figure 
displays the accumulated blue histograms for both sam-
ples at two different surface affectation levels. The 
models were made in two different colors (skin and black), 
looking to verify the response for materials with colors 
located on the low-key tone region (dark tones) and the 
high key tone region (bright tones).The results confirmed 
that the color variations (especially in the blue channel) 
had mapped fairly well the disintegration changes on the 
surface of the sample; despite which tonal range the 
material dominant color is, Therefore, it suggests that 
color image properties would be better disintegration 

evolution indicators than grayscale, converted images, 
which are traditionally used. 

 
 
 
 
 
 
 
 
 
Figure 3 Accumulated histograms variations on clay 

models a) Skin on the top b) black on the bottom. 

The change in the blue channel has not deeply consid-
ered hitherto because the majority of the studies had used 
greyscale transformed images, this transformation causes 
losses of relevant color information related with disinte-
gration. For instance, Figure 4 shows how a conventional 
grayscale conversion (using the same weight for each 
color channel histogram), would generate an image in 
which the histogram tends to be located in the mid-tone 
region, producing information loss on the dark tones 
region;  it is in this region where information related to 
disintegration is concentrated. So, the significance of blue 
channel changes related to disintegration was verified 
through reflectance measurements using a Hyperspectral 
Scanner in the visible and near infrared range (VIS-NIR). 
Figure 5 shows the change in reflectance in three different 
surface affectations upon a clay model; the blue line 
corresponds to the unaltered zone which has the higher 
reflectance (designated by the letter “a” on the image); the 
red line corresponds to a shallow affectation zone 
(designated by the letter “b” on the image), whereas green 
line corresponds to a profound void (designated by the 
letter “c” on the image). These measurements reveal how 
for the most affected zone corresponding to the deeper 
void the light absorbance is major in the blue color 
wavelengths region. 

3. Color indexes  

Some studies had been made relating color indexes and 
different geomaterial properties, applied mostly to soils 
(Levin, Ben‐ Dor et al.[5]; Madeira, Bedidi et al. [6]; 
Mathieu, Pouget et al.[7].; Torrent & Barron, [8]). These 
have been focused predominantly in seeking correlation 
with some mineralogical properties. The alterations in 
color have been parameterized through different color 
indexes using spectrophotometric and visible camera 
imaging systems. The colorimetric indexes have been 
used both in remote sensing and laboratory image analy-
sis; these indexes had been recognized to be good 
predictors of soil for both types of analysis (Levin et al., 
[5]; Mathieu, Pouget et al [7]). In this research Coloration 
index (CI) (Eq. 1), Redness index (RI) (Eq. 2), Brightness 
Index (BI) (Eq. 3), Saturation index (SI) (Eq. 4), and Hue 
index (HI) (Eq. 5), proposed by Mathieu, Pouget et al. [7] 
and Madeira, Bedidi et al. [6] were studied in order to 
assess their reliability like disintegration descriptors. 
These indexes were incorporated into an in-house de-
veloped algorithm; in which complementary subroutines 
were coded in order to perform surface pattern analysis. 

a 

b 
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The algorithm was applied to images from samples with 
different disintegration states. A calibration process was 
made through a sensitivity analysis at single pixel level on 
both selected natural scene image locations and idealized 
artificial images, in order to understand the behavior of 
each index and correlate them with color parameters de-
fining the range of values to use for disintegration 
associations. 

 
 
 
 
 
 
 
 
 
Figure 4 Comparison of color histograms with the 

grayscale histogram for a field mudstone image. 

Coloration index 

 𝐶𝐼 = (𝑅 − 𝐺)/(𝑅 + 𝐺) Eq. 1 

Redness Index  

 𝑅𝐼 = 𝑅^2/(𝐵 ∗ 𝐺^3 ) Eq. 2 

Brightness Index 

 𝐵𝐼 = √(𝐵^2 + 𝐺^2 + 𝑅)^2/3) Eq. 3 

Saturation Index 

 𝑆𝐼 = (𝑅 − 𝐵)/(𝑅 + 𝐵) Eq. 4 

Hue Index 

 𝐻𝐼 = (2 ∗ 𝑅 − 𝐺 − 𝐵)/(𝐺 − 𝐵) Eq. 5 
 

The results showed that the RI has a good performance 
differentiating principal cracks and deep voids; because 
its equation incorporates the blue tones, and blue color 
changes alter the IR drastically, IR variations could be 
used to make reliable differentiation between unaffected 
and affected zones. However, because the green color is 
also integrated on the IR equation, it causes IR to reduce 
its performance for materials in which their dominant 
color is between 520-580 nm. Subsequently, IR just could 
be used with good performance for materials in which the 
dominant color has dominant frequencies higher than 580 
nm tending to Red color Hues zone. CI, showed a good 
performance on monochromatic clay models images 
(Figure 6), however, some classification mismatches were 
observed on natural mottled materials (Figure 7). It could 
be due to the blue color omission. So, it makes CI weak to 
be used as a disintegration classifier. SI and BI presented 
deficiencies in the classification process on natural mott-
led materials as well, so, the use of these two indexes 
could not be favorable as a disintegration classifier. Fi-
nally, the Hue Index (HI) has shown an excellent 
performance both classifying disintegration features on 
one-color clay models and mottled materials; the index 
shows good performance differentiating alterations ac-
cording to their depth. Therefore, through the HI would be 
possible to classify features such as principal void struc-
tures, cracks, surface irregularities, fragments and fine 
cracks. Thus, relative changes in Hue index appear to be a 

good parameter in order to assess disintegration features 
and to estimate changes in the elements relative positions. 

 
 
 
 
 
 
 
 
 
Figure 5 Measured reflectance on three clay model 

zones a) unaffected b) shallow void c) deep void 

4. Image Entropy 

Image entropy, is a statistical second order parameter 
reflecting the homogeneity of the image, it is a commonly 
used parameter for image analysis. The parameter, 
originally proposed by Shannon (1948) and denoted by 
the letter H, is defined as: 

 

H = ∑ Pi log2 Pi
L
i=1   Eq.6 

 
Where Pi is the probability of the occurrence of the 

pixel value i, calculated from the ratio between each 
histogram cell that contains the observed frequency of the 
corresponding image intensity value and the total number 
of pixels in the image. The value of entropy is given in 
bits. According to Burger and Burge [9], entropy is a 
statistical measure that quantifies the average amount of 
information contained in the “messages” generated by a 
stochastic data source. Thus, a number of pixels, N, can be 
interpreted as a message of N symbols. From the point of 
view of the disintegration of weak rocks, the message 
could be associated with the changes in the values of 
intensities of each color, i.e. red, green, or blue (RGB), of 
each pixel in the captured image. The changes in entropy 
reflect modifications in the surface texture due to cracks, 
fragmentation, and voids. First, artificial binary images 
were created, based on the disintegration patterns 
included in the SDR chart by Erguler and Ulusay (2009). 
These images were then used to investigate the 
relationship between entropy (H), mean SDR for each 
class and mean fracture frequency (𝜆) The results show 
that an increase in entropy indicates a decrease in SDR 
value, and an increase in (𝜆) and affected surface area. 
Second, oil-based clays models were made. The models 
allowed sensitivity analysis of image entropy changes 
under controled conditions of size, light, color, surface 
irregularities, and sequence of disintegration. Finally, 
entropy was calculated for different laboratory samples 
and slopes images exhibiting different levels of 
disintegration. Thus, a theoretical relationship between 
entropy values obtained from the binary images, created 
to simulate the fracture patterns corresponding to SDR 
classes, and the mean fracture frequency (𝜆) for each 
pattern was made. The analysis  initially showed that the 
range of possible entropy values for SDR classes is 0-8. 
Two of the suggested patterns in the SDR clasification 
system, do not follow the same trend as the other seven 
SDR classes or patterns. A possible explanation for this 
could be that the SDR patterns are based on the presence 
of only visible cracks captured by a binary image and do 
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not consider microcracks, voids, and other irregularities. 
 
 
 
 
 
 
 
 
 
Figure 6 Coloration Index surface map unicolor clay 

model sample. 

 
 
 
 
 
 
 
 

Figure 7 Detail of Coloration Index surface map 
mismatches on mottled zones. 

 

The analysis revealed that the minimum entropy was 
4.84 bits for clay models, whereas for rock samples, the 
minimum entropy value was around 5 bits, obtained from 
low disintegration rock fragments carefully selected 
during excavation process. Figure 8 shows entropy values 
for the same material in different disintegration states. On 
the top a carved sample entropy value of 5.89 bits, the 
entropy drops to 5.39 bits for the same image segmented 
without edges. The image of the same sample after five 
days of exposure to natural climatic conditions is pre-
sented on the left, thus the entropy increased to 6.46 bits. 
On the bottom the same material in the field is presented 
on the left two months after the excavation entropy was 
7.1 bits. On the right after 32 months and the entropy 
increased to 7.7 bits. These results show that entropy 
increases with increasing degree of disintegration. This 
trend was verified using other materials with different 
lithological conditions and clay models with different 
colors and initial surface conditions. Finally, it was 
possible  to find that the entropy varies linear with the 
affected surface and it  reaches its maximum value 8 
when surface is affected at about a 27%. Thus applying 
that relation, it was possible to define an effective 
correlation between image entropy and disintegration 
degrees.(low entropy values entropy less than 6 bits, 
medium degree of disintegration entropy values between 
6 and 7 and high degree of disintegration entropies above 
7 bits). 

5. Conclusions 

Through the provided experimental data summarized 
here, it was possible to establish that image analysis 
techniques can be used reliably in order to classify the 
disintegration state of weak rocks and Intermediate 
Geomaterials, it is possible by analyzing the surface color 
intensities variations, produced by the changes in light 
interaction due to disintegration features increase. If well; 
all color channels red, green and blue are affected, the 
blue channel histogram offers valuable information to 

identify disintegration features. 
The image entropy can be used reliably as disintegra-

tion descriptor for characterizing and monitoring Weak 
rocks and Intermediate Geomaterials disintegration evo-
lution both in laboratory samples and cut slopes in the 
field. It is useful to differentiate between materials of low, 
medium, and high degrees of disintegration. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8 Example entropy value for samples and 

slopes exhibiting different levels of disintegration. 
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