
Transfer learning of a deep convolutional neural network for
localizing handwritten slab identification numbers

Sang Jun Lee
POSTECH, Korea

lsj4u0208@postech.ac.kr

Gyogwon Koo
POSTECH, Korea

ggkoo99@postech.ac.kr

Hyeyeon Choi
POSTECH, Korea

hyeyeon@postech.ac.kr

Sang Woo Kim
POSTECH, Korea

swkim@postech.ac.kr

Abstract

Most machine learning methods assume that pre-
vious and future data have same distribution in same
feature space. This paper presents a real-world prob-
lem that violates the common assumption, and we pro-
pose a practical methodology to handle the problem. In
the steel making industry, automated marking systems
are widely used to inscribe slab identification numbers
(SINs). In the previous work, a deep learning based al-
gorithm was developed to automatically extract regions
of printed SINs. However, as the marking system is
outdated, few SINs are marked by hand in uncommon
situations, and the existing algorithm does not work
for the handwritten SINs. This paper proposes a prac-
tical method that uses very small training data (10 im-
ages) to localize handwritten SINs. The knowledge of
mid-level layers or entire layers in the pre-trained deep
convolutional neural network is transferred to overcome
the shortage of training data in the target domain. Ex-
periments were conducted with actual industrial data
to demonstrate the effectiveness of the proposed algo-
rithm.

1 Introduction

In the steel manufacturing industry, identification
of individual products is important for the production
management. Automated marking systems with a spe-
cialized paint that is endurable to the high tempera-
ture of steel products are widely used to inscribe prod-
uct identification numbers. For the automatic recogni-
tion of a product identification number, accurate lo-
calization is a challenging problem due to intricate
background of actual factory scenes. In our previous
work [1], a deep learning based algorithm was devel-
oped for localizing slab identification numbers (SINs)
that were printed by a paint marking machine. This
previous algorithm used a deep convolutional neural
network (DCNN), and it achieved better performance
compared to a rule-based localization algorithm [2] for
printed SINs. However, in an actual steelworks, SINs
are marked by hand in few exceptional circumstances,
and the previous localization algorithm does not work
for the few uncommon situations. Furthermore, the
number of handwritten SINs is not sufficient for train-
ing a new DCNN. In this paper, we propose a practical
methodology that uses transfer learning to handle the
actual industrial problem.

A DCNN, firstly proposed in [3], is a popular deep
learning structure for image data. Recently, noticeable

Table 1. Outline of transfer learning for the lo-
calization of handwritten SINs.

Source Target
Domain Printed SINs Handwritten SINs

Task Localization of SINs (classification of sub-regions)

performance improvements have been achieved with
the use of DCNNs in computer vision tasks such as
image classification [4], object detection [5], and other
applications [6, 7]. In spite of its outstanding perfor-
mance, construction of sufficiently big training data
is a difficult and time-consuming task in some indus-
trial fields. This issue can be handled by transferring
source-domain knowledge that is related to a target
task.

Transfer learning is the use of knowledge acquired
from a source domain for solving a related problem.
General frameworks for the transfer learning and key-
words such as domain and task are well-summarized in
[8]. In many machine vision applications, knowledge
transfer from a source domain to a target task have
been used to handle the problem of insufficient train-
ing data or different distributions of previous and fu-
ture data [9, 10, 11, 12]. The architecture of a DCNN is
suited for transfer learning, and source-domain knowl-
edge can be transferred without the use of source-
domain data. There are two major approaches for
transferring source-domain knowledge of a DCNN. The
first approach is knowledge transfer of mid-level repre-
sentations [13, 14]. In this approach, low and mid-level
parameters of a DCNN are reused, and new adaptation
layers or simple machine learning techniques such as
a support vector machine are added to solve a tar-
get task. Another approach is transferring the en-
tire model of a DCNN. A DCNN that was previously
trained with source-domain data was fine-tuned using
a small number of target-domain data in [15, 16]. In
this paper, both two approaches are employed to solve
the actual industrial problem.

Our problem has different domains and same task for
source and target as summarized in Table 1. A large
number of printed SINs were used as source-domain
data, and target-domain data were constructed with
few number of handwritten SINs. Fig. 1 presents ac-
tual factory scenes in source and target domains. Im-
ages in both domains have similar background con-
tents, but the shape of SINs are different. The ob-
jective of this paper is to develop a localization algo-
rithm for handwritten SINs using very small number
of target-domain data.
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(a) Source-domain data. (b) Target-domain data.

Figure 1. Examples of actual factory scenes in
source and target domains.

2 Transfer learning of a DCNN

2.1 Source-domain data (printed SINs)

In our previous work, 4934 actual factory scenes that
contain 10007 slabs with printed SINs were utilized to
generate patch images. From regions of background
and SINs, 4.6 million patch images with the fixed size
of 20×48 were collected to train a DCNN. Architec-
tures of DCNN were designed to classify sub-regions in
a test image for the localization of printed SINs. The
DCNN model for the transfer learning has three con-
volutional layers and two fully-connected layers, and it
contains 161,568 trainable parameters.

2.2 Training data (handwritten SINs)

A SIN is marked by hand in uncommon situations,
and collecting sufficient number of handwritten SINs
is difficult in our industrial application. In this paper,
very small number of actual factory scenes (10 images)
that contain handwritten SINs are used to construct
training data. From the 10 training images, a sliding
window method with a vertical 5-pixel/10-pixel or hor-
izontal 12-pixel/24-pixel displacement was used for re-
gions of SINs/background to collect patch images with
the size of 20×48. In this procedure, 2223 and 23010
patches were collected from the regions of handwritten
SINs and background, respectively.

2.3 Two approaches for transfer learning

The DCNN that was pre-trained in the source do-
main and two approaches for transferring the knowl-
edge of printed SINs are depicted in Fig. 2. The first
approach uses the knowledge of mid-level representa-
tions in the pre-trained DCNN, and new adaptation
layers are added as shown in Fig. 2(a). The weights
of the convolutional layers in the pre-trained DCNN
are reused, the adaptation layers are trained with the
training data using its activation values of the last
convolutional layer. Fig. 2(b) presents the second ap-
proach of transfer learning, and the entire model of
the pre-trained DCNN model is reused. The transfered
DCNN model is fine-tuned using the training data in
the target domain.

2.4 Training of handwritten SINs

A DCNN structure is trained in three ways using
the training data. The first training method uses only
training data, and the second and third methods use
the training data with the source-domain knowledge.
The performance for the training patches in the target-
domain data are presented in Fig. 3. The accuracies

Figure 2. Two knowledge-transferring approaches
for localizing handwritten SINs.

Figure 3. The accuracy for the classification of
the training data.

of the pre-trained network, a DCNN trained with only
target-domain data, and DCNNs with the two types
of transfer learning are compared. The pre-trained
DCNN that was trained in the source domain does
not work for the localization of handwritten SINs. Al-
though most of background patches were correctly clas-
sified by the pre-trained network, many patches that
belong to a region of a handwritten SIN were incor-
rectly classified into a background patch. The perfor-
mances using the other three training methods were
almost saturated after 20 epochs.

3 Localization of SINs

For a test image, a sliding window method is uti-
lized to extract patch images with the size of 20×48.
The patch images are classified into a background or
SIN region by using a DCNN. A character confidence
map is calculated using the probabilities that individ-
ual patches in the test image belong to a region of a
SIN. Fig. 4 shows a test image and its character confi-
dence map. Bounding boxes for handwritten SINs are
obtained using the character confidence map.

4 Experimental results

The proposed algorithm for the localization of hand-
written SINs was tested on 387 actual factory scenes
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Figure 4. Localization procedure for a test image.

Figure 5. AP for the localiation of SINs.

that contain 683 slabs. In Fig. 5, the localization
performances of the two knowledge-transferring ap-
proaches were compared to the performances of the
pre-trained DCNN and a DCNN that uses only train-
ing data. The performance was measured using aver-
age precision (AP), and AP is defined as below:

AP =
1

N

∑
i

|Pi ∩ Ti|
|Pi ∪ Ti|

, (1)

where Pi and Ti are the predicted and true regions of
SINs in the i-th image, N is the total number of test
images, and |Pi| is the area of the region Pi. Fig. 5
presents APs for the 4 cases of a DCNN during 50
training epochs. The APs of the DCNNs that use the
source-domain knowledge were higher than the AP of
the DCNN that uses only training data.

AP is a widely used measure in the field of object
detection, and it measures the ratio of overlapped area
of true and predicted regions. Generally, localization is
performed for a following recognition task, and a small
cropped region is not critical in most object recognition
problems. However, a small cropped region is a criti-
cal problem for recognizing a SIN, because one miss-
ing or incorrectly recognized character results in failure
for the recognition of a SIN. Therefore, sensitivity and
precision were measured for comparing actual perfor-
mances of 4 cases of the DCNNs, and it is summarized
in Table 2. Sensitivity is the ratio of the number of cor-
rectly localized SINs to the number of true SINs, and
precision is the ratio of the number of correct SINs
to the number of predictions. A visually recognizable
case is regarded as a correct SIN. The error rates in
the sense of sensitivity and precision were noticeably
reduced by using the source-domain knowledge.

Fig. 6 presents result images for the localization of
handwritten SINs, and it compares the results with
pre-trained DCNN and the results that use transfer
learning of the entire DCNN model with fine-tuning.
Incorrectly localized SINs in Fig. 6(a) are due to fail-
ure in classification of patches that contain a handwrit-
ten SIN. The localization algorithm that uses source-
domain knowledge succeeded to the localization of
SINs in Fig. 6(a). In Fig. 6(b), the localization re-
sults using the pre-trained DCNN are not recognizable
due to small cropped regions of the SINs. This results
show the significance of accurate localization of SINs.

5 Conclusion

This paper proposes a practical methodology for
handling the problem of insufficient training data. In
spite of the high performance of deep learning based
algorithms, its application on an industrial problem is
difficult due to challenges for collecting unusual data,
tedious labeling processes, or different distributions of
previous and future data. In an actual steelworks, SINs
were unusually marked by hand as an automated mark-
ing system was outdated. The previous deep learn-
ing based algorithm did not work for the localization
of handwritten SINs, and the number of handwritten
SINs is insufficient for training a new DCNN. To solve
the real-world problem, the knowledge of printed SINs
was regarded as source domain, and it was transferred
in two ways for the localization of handwritten SINs.
Experiments show that our methodology that is based
on transfer learning is practical and effective for using
very small number of training data.
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