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Abstract

A new approach to classify human body parts in
depth images is proposed. The approach is based on
geodesic descriptors. Such a descriptor randomly sam-
ples the local geodesic neighborhood of each depth pixel.
During a training phase, a random forest classifier
learns the correct body part from these descriptors.
The experimental evaluation shows that we can robustly
classify 19 body parts for several different poses and
body proportions. We further compare our approach
and the classification based on geodesic distance fea-
tures to those that were used in previous works.

1 Introduction

The robust estimation of human poses has a wide
range of applications like human-computer interaction,
gesture and action recognition, but is still a challeng-
ing task as the human body is capable of an enormous
range of poses. Furthermore, different body sizes and
-proportions have to be taken into account. Over the
last two decades, many different approaches were pro-
posed. They can be distinguished e.g. by whether 3d
information is available or the approach is pure im-
age based. Another criterion is whether the approach
employs any kind of a priori knowledge, for example
in the form of pretrained classifiers or pose databases
to which an observed pose is tried to be matched.
Further distinctions can be made by whether the ap-
proach attempts to estimate the complete pose in form
of joint positions or whether the different body parts
are to be detected. Image based methods use features
like silhouettes [3], skin colour or contours [2], but of-
ten lack the ability to resolve ambiguities, e.g. like
self-occlusions. Approaches using databases are of-
ten restricted to previously trained poses. In contrast,
methods without any prior knowledge [1] can estimate
arbitrary human poses but rely on an exact feature
point extraction. In [4], the authors used geodesic dis-
tances to segment human body parts and optical flow
was used to solve for ambiguities during occlusions.
The authors in [6] matched the positions of detected
geodesic feature points to a predefined pose database.
In his break-through paper [5], Shotton utilizes ran-
domly sampled depth differences and random forests
to classify the body part of a depth pixel and also to
determine the joint positions of a skeleton model. A
similar approach was made by the authors in [8] who
used regression forests to learn the direction towards
a skeleton joints based on depth difference features. A
graph based method was presented in [7] which deter-
mines the pose from volumetric 3d data. And a recent
approach was presented in [9], where deep convolu-
tional networks were used to determine human poses

in 2d images. In this work, we propose a new approach
based on depth images that utilizes local geodesic dis-
tance based features to classify the body part to which
a depth pixel belongs. We thus follow the suggestions
made in [5] and replace the simple depth based features
by more complex ones which contain a much higher in-
formation value per pixel. This enables us to robustly
classify the body parts of a person in several poses.

2 Training Data

For training the classifiers, the correct body part of
each depth pixel has to be known. Generating this
ground truth data from real depth data recordings
is very subjective to the labeling person and practi-
cally not possible. Following the approach made in [5],
we use synthetic data. Next to the existence of reli-
able ground truth data, a major benefit is that several
parameters like body proportions, camera parameters
and noise can be varied and their influence on the pose
estimation results can be examined without the need
of multiple recordings. We use animated 3d charac-
ter models taken from MakeHuman to create synthetic
depth images. To obtain pose data, i.e. sequences of
skeleton joint positions, a human actor performed sev-
eral poses in front of a Kinect sensor. In our rendering
tool, the 3d mesh is then animated using linear skin-
ning and rendered into a depth buffer. This takes into
account that a camera only sees the frontal face of
the human body and that are hidden body parts due
to self occlusions. Different 3d characters were used
to simulate different body proportions (Fig. 1a). For
each pose, there is a also map Bk that stores the body
part of each depth pixel. The 19 used body parts are
B = {shoulders(2), feet(2), hands(2), upper arms(2),
lower arms(2), upper legs(2), lower legs(2), head(1),
neck(1), hip(1), torso(1), belly(1)} (Fig. 1b). Some
exemplary poses are shown in Fig. 2.

a) b)

Figure 1: a) Different 3d models used to create a set of
articulated human poses. b) Ground truth body parts (19).
For each depth pixel the body part is known.
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Figure 2: Top: Exemplary poses of the training data set.
Bottom: Results of the geodesic distance calculation.
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Figure 3: a) Overview of the proposed approach.

3 Bodypart Classification

A brief overview of the proposed approach is pro-
vided in Fig. 3. Our goal is to determine for each
pixel of a depth image Dk the body part bj ∈ B. The
first step is to compute the geodesic distances to the
torso center. This results in a geodesic distance map
Gk. From Gk, a set of feature vectors Γ (geodesic de-
scriptors) describing the local geodesic neighborhood
of a depth pixel is extracted. Based on those descrip-
tors and a pre-trained Random Forest, the body part
is classified in a final step.

Geodesic distances: The first step is to transform
the depth image Dk into a 3d point cloud Wk, based
on a pinhole camera model C = {cx, cy, ck}, in which
[cx, cy]T denotes the camera’s principal point and ck is
the camera constant. Wk is an organized point cloud,
i.e. for each 3d point wi there is a corresponding 2d
point w′i in the depth image. The point cloud is then
described as a weighted graph G = (Wk, E). Two
3d points are connected by an edge, if either an edge
criterion C1 or C2 is fulfilled. The former connects two
nodes if their euclidean distance is below a threshold
εc1 and if they correspond to adjacent pixels in the
depth image (Eq. 1). The second one (Eq. 2) connects
two nodes, if all depth image pixels between them have
a lower depth value, i.e. are closer to the camera:

C1(i, j) = ||wi −wj||2 ≤ εc1 ∧ s(w′i,w′j) ≤ 1, (1)

C2(i, j) = dm < min(di, dj),∀wm ∈ w′iw
′
j, (2)

where s( · ) is the spatial 2d distance and dm() is the
depth value of point w′m. To each edge, a weight ω(E)
is assigned, which is the Euclidean distance between
the connected nodes. Using Dijkstra’s algorithm, the

shortest possible connection (path P) between two ar-
bitrary 3d points a,b ∈ Wk is determined. The
geodesic distance (Eq. 3) between a and b is then
given by the cumulative weight of all edges that are
element of the path.

g(a,b) =
∑

E∈P(a,b)

w(E) (3)

In Fig. 2 (bottom) some results of the geodesic dis-
tance calculation are shown. The depicted color repre-
sents the geodesic distance from the point cloud cen-
ter, ranging from green (low distances) to red (high
distances). It can be seen that the geodesic distance
are also computed correctly when the body is occluded
by a limb. The second criterion is crucial for a correct
distance calculation as it prevents the fragmentation of
the graph into several isolated graph segments in the
case of self occlusion. Despite its simplicity, the used
method is superior to other approaches, in which the
fragmentation problem is either completely neglected
[4] or separated graph segments were connected based
on their Euclidean distance.

Geodesic descriptors: We now describe the features
that are used as input to the body part classification.
The main assumption is that each body part can be
classified by analyzing its local geodesic neighborhood,
i.e. that a pixel in a shoulder sees another set of
geodesic distances in its 2d neighborhood as a pixel
located within the torso. Let xi denote the 2d position
of a depth pixel. Its feature vector Fi is composed of
a subset of feature vectors that we call geodesic de-
scriptors (Eq. 4). Each descriptor contains a set of
geodesic distances that were randomly sampled from
the geodesic distance map Gk (Eq.5).

Fi = {Γj}j=1...Nt
(4)

Γj =
{gjm}m=1...Nf

gmax
, with (5)

gjm = Gk(xi + ~uj
m), ∀m = 1 . . . Nf (6)

Here, ~uj
m is a 2d offset vector that is ran-

domly sampled from the 3d interval Iw =
[(−Nw,−Nw, 0) . . . (+Nw,+Nw, 0)] and mapped to 2d
using the pinhole camera model and the actual depth
value at xi. For the sake of clarification, we want to em-
phasize that the offset vectors ~uj

m are randomly sam-
pled for each geodesic descriptor - and not for each
pixel. So, each descriptor is based on its own set of
offset vectors.

There are three free parameters in our approach:
(1)Nt is the number of geodesic descriptors Γ that are
evaluated per pixel; (ii) Nf is the number of offset
vectors ~uj in each geodesic descriptor and (iii) Nw de-
termines the maximum 3d size of a geodesic neighbor-
hood. In this work, we are particularly interested in
the analysis of these parameters and their effect on the
classification performance (see section 4).

Furthermore, we want to note that the features used
in our approach are similar to those in [5]. Instead of
geodesic distances, their features are composed of a set
of depth differences at randomly sampled offset posi-
tions (Eq.7). Whereas the use of simple depth differ-
ences was strongly motivated by their computational
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efficiency, the use of geodesic distances is motivated by
the fact that they contain much more information per
pixel that can be used to classify the body part. The
authors of [5] were already aware of this and suggested
to use more complex features like depth integrals or
local descriptors.

f jm = Dk(xi +
~uj
m

Dk(xi)
)−Dk(xi +

~vj
m

Dk(xi)
) (7)

Random Forest classification: A random forest
was used as a classifier. There is one tree for each
geodesic descriptor Γj , so that each tree learns the cor-
rect body part from a different sampled geodesic neigh-
borhood. Nt is therefore also equivalent to the num-
bers of trees. The tree was trained using the CART
algorithm ([10]). As we want our classifier to gener-
alize, the maximum tree depth is limited to 9. The
class voting is based on the posteriori class probability
distributions Pj(B|Γj). These define for a given depth
pixel and its observation Γj the probability to be in
class bi ∈ B. We combine the probability distribu-
tions of all trees and assign to a given depth pixel the
body part class that maximizes the combined proba-
bility distribution (Eq. 8).

bi = arg max
b ∈ B

Nf∑
j=1

Pj(B|Γj) (8)

4 Experimental Results

Several experiments were carried out, in which we
evaluate the classification performance of the proposed
approach and examine the impact of the three free pa-
rameters (section 3) on the classification results. The
experiments were run on the training data (section 2)
which contains approx. 1000 different poses and three
different character models. For each depth image all
steps described in section 3 were performed. All results
shown here are 10-fold cross-validated. In each itera-
tion, 90% of the complete training data were used to
train the classifier and the remaining 10% were used
for testing. This was repeated 10 times and in each
iteration a different subset was used for testing.

As a performance measurement of the classifier, the
precision pi and recall values ri per class were com-
puted. In the confusion matrices shown, rows denote
the actual classes and columns refer to the predicted
ones. The numbers in the confusion matrices are nor-
malized to the number of actual pixels in each class
and thus are true positive rates. The last row in each
confusion matrix is the precision per class.

In a first experiment, the number of trees Nt of the
random forest classifier were varied from 1 to 40 and
the other parameters were kept constant (Nf = 5,
Nw = 10 cm). A subset of the confusion matrices C
are shown in Fig. 5(a-d) and the mean precision p and
recall r values per tree number are depicted in Fig.
4a. One can see that when only a small number of
trees (1 or 2) are used, the classification performance
is quite low (both recall and precision are between 0.61
and 0.67). The main reason for this is that the clas-
sifier is not able to model the subtle differences in the
geodesic neighborhood and therefore can not distin-
guish between body parts that have a similar geodesic

distance from the torso center. Using one tree (Fig.
5a), for example only 30% of the pixel that actually
belong to the right lower arm (rlA) were correctly clas-
sified, but the same amount was determined to be part
of the left lower arm (llA). The same is true for the
right and left upper arm. As the tree number increases
from 1 to 10, both the precision and recall significantly
increase (Fig. 4a). One can see that there is however
a clear cutoff number. When the tree number exceeds
10, the further improvement is very low (2% - 3%).
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Figure 4: Performance of the body part classifica-
tion (mean precision and recall values) for (a) differ-
ent numbers of decision trees, (b) different geodesic
descriptor sizes, (c) varied sizes of the local geodesic
neighborhood. In (d), precision and recall compared
to approach proposed in [5] are shown.

In a second experiment, we varied the size of each
geodesic descriptor, Nf , i.e. the number of offset vec-
tors (Fig. 4b and Fig. 5e-f) from 1 to 15. When
only one offset vector is used, the classification perfor-
mance is extremely low (mean recall r = 0.1). This is
an expected result, as it means that body parts must
be distinguished based on only one geodesic distance.
There is, however, more than one body part with the
same geodesic distance from the torso center. Again,
it can be seen that there is a clear cutoff number of
features (Nf = 5) at which any further improvement
in both precision and recall is only very low. Similar
experiments were performed for the maximum size the
geodesic neighborhood Nw (Fig. 4c). The number of
trees were set to 10, and also 10 features per geodesic
descriptor were used. Using a distance that is too small
results in a poor classification (approx. 0.63 in both
recall and precision for Nw = 2 cm). We assume the
reason for this is that such a small maximum distance
is below the error of the geodesic distance computa-
tion. Based on those results, we set Nw to 10 cm in the
following experiments. Finally, we compared our ap-
proach to the one described in [5]. Instead of geodesic
based features (see Eq. 5 in section 3), the authors in
[5] have used features that are based on local depth
differences (Eq. 7). The results are shown in Fig. 4d.
Using the depth based feature approach, the approx-
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imated mean recall on our data set was r ≈ 0.6 and
the mean precision value was p ≈ 0.8. These results
match the ones reported by Shotton et.al. Using the
proposed approach both the recall and precision were
approximately p ≈ r ≈ 0.9. Considering the low re-
call value of 0.6, the geodesic distance based approach
clearly outperforms the one using depth differences. As
already mentioned in the method section, this result is
expected by both us and the authors of [5], since these
features contain more information than simple depth
differences.

5 Conclusion

We proposed a new approach to detect and classify
human body parts in depth images. The approach de-
termines for each depth image pixel to which body part
it belongs. Following the suggestions made by Shotton
et. al. we replace their depth difference based features
by more complex ones that describe the local geodesic
neighborhood. For this, the geodesic distances to the
torso center are computed and randomly sampled in
the 2d neighborhood of each depth pixel. We call these
features a geodesic descriptor. A random forest clas-
sifier is then used to learn the correct body part from
these descriptors. The presented experimental evalu-
ation shows that we can robustly identify 19 human
body parts in different poses as long as the the person
is facing the camera (< 60◦) and there is no other ob-
ject between the user and the camera. We have further
evaluated the classification performance based on both
geodesic and depth difference based features. As ex-
pected, the geodesic based features contain much more
information per pixel and led to an increased classifica-
tion performance of ≈ 50% (recall value). As such, the
proposed approach can build the basis for a subsequent
human pose estimation approach.
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Figure 5: Confusion matrices of the body part classifica-
tion (ten-fold cross-validated) with a random forest of 1(a),
2(b), 5(c) and 40(d) trees and five features per geodesic
descriptor. (e) Result using 10 trees and 2 features. (f)
Result using 10 trees and 5 features. Columns refer to the
predicted classes. The numbers denote the true positive
rates. Last row are precision values.
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