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Abstract

Evaluating the execution style of human motion can
give insight into the performance and behaviour ex-
hibited by the participant. This could enable support
in developing personalised rehabilitation programmes
by providing better understanding of motion mechanics
and contextual behaviour. However, performing anal-
yses, generating statistical representations and models
which are free from external bias, repeatable and ro-
bust is a difficult task. In this work, we propose a
framework which evaluates clinically valid motions to
identify unstable behaviour during performance using
Deep Convolutional Neural Networks. The framework
is composed of two parts; 1) Instead of using the whole
skeleton as input, we divide the human skeleton into
five joint groups. For each group, feature encoding is
used to represent spatial and temporal domains to per-
mit high-level abstraction and to remove noise these
are then represented using distance matrices. 2) The
encoded representations are labelled using an automatic
labelling method and evaluated using deep learning. Ex-
perimental results demonstrates the ability to correctly
classify data compared to classical approaches.

1 Introduction

There has been significant interest in digital analysis
methods for detection and quantification of human mo-
tion for use in electronic health interventions [1]. This,
in part, is due to the increased availability of low-cost
multi-modality marker-less capturing devices. Sensor
technology (e.g. Microsoft Kinect) offers new dimen-
sions by harnessing multiple techniques such as feature
extraction and encoding. This has been observed in the
work of Bigy et al. [2], they proposed a technique for
recognising posture and Freezing of Gait in those with
Parkinsons disease to aid in detecting trips and falls
within the home. Yang et al. [3] implemented a frame-
work that extracts both depth and colour image data
from the Kinect to assess the posture of participants
when performing standing balance, the framework al-
lowed for detection of subtle directional changes such
as postural sway.

A few studies have sought to validate depth sensor
technology and its use in the medical domain [4]. Clark
et al. [5] captured a cohort of participants performing
a series of clinically valid balance tests. Kinect and
marker-based Vicon data were captured concurrently,

with data from both systems filtered and synchronised.
The Kinect was found to be highly robust and accurate
when compared to the Vicon capture system. Men-
tiplay et al. [1] assessed the validity of the Kinect in
tracking gait compared to 3DMA marker-based cam-
era system. The authors found that while the Kinect
is not suitable for tracking lower body kinematic data,
only measuring spatio-temporal aspects of gait. These
works highlight the clinical feasibility of the Kinect to
assess human kinematics.

In this work, we propose a framework for unsta-
ble performance using deep learning. The framework
acquires motion capture (MoCap) data from a single
depth sensor. The skeletal stream is divided into five
groups; for each group, feature representation tech-
niques encode the MoCap sequence in the spatial and
temporal domains. Deep Convolutional Neural Net-
works (DCNNs) are used to identify when a partici-
pant is unsteady in motion performance. This is then
fed back to the clinician to offer greater support in
developing a personalised rehabilitation programme.

2 Methods

2.1 Feature Generation and Encoding

Recognising the context and behaviour of human
motion is not a straightforward task, more so when
identifying instability in motion from a diverse range
of participants, environments and modalities. Du et
al. [6] used a Hierarchical Recurrent Neural Network
for action recognition, with the concept of dividing the
skeleton into joint groups, based on anatomical sig-
nificance to the motion sequence. Each joint group
is represented by a set of features which are encoded.
This encoding shows promise in modelling subtle mo-
tion differences. Leightley et al. [7] derived sixty-three
features representing five joint groups, using the joint
group concept, these were trained using Support Vec-
tor Machines (SVM) to detect mobility impairment.
We utilise the joint groups proposed in [6] and extend
the number of features derived in [7] by introducing a
set of new features. A summary of the feature groups
and encoding methodology is presented in Table 1.

There are several pose-based features and measure-
ments which can be extracted from the skeletal stream
[8, 9]. However, there are difficulties in identifying the
variables which are capable of describing the motion
efficiently. Alongside the features presented in Table
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Table 1. Summary of encoded features for each group and the corresponding dimensionality of the group
feature vector.

Joint Group Features Kinect Joints
FLeftArm Left arm Euler Angle, Euclidean distance between the

left shoulder and left hand, x and y axis vectors.
Length = {1 . . . , 12}

LeftShoulder,
LeftElbow, LeftWrist,
LeftHand

FLeftLeg Left leg Euler Angle, Euclidean distance between the
left hip and left foot, x and y axis vectors. Length =
{1 . . . , 12}

LeftHip, LeftKnee,
LeftAnkle, LeftFoot

FRightArm Right arm Euler Angle, Euclidean distance between the
right shoulder and right hand, x and y axis vectors.
Length = {1 . . . , 12}

RightShoulder,
RightElbow,
RightWrist, RightHand

FRightLeg Right leg Euler Angle, Euclidean distance between the
right hip and right foot, x and y axis vectors. Length =
{1 . . . , 12}

RightHip, RightKnee,
RightAnkle, RightFoot

FTorso Torso Euler Angle relative to the body, Euclidean dis-
tance between the spine base and head, Body Movement
Zone, Body lean angle (relative to the floor with torso
as a reference), Centre-of-Mass (between left shoul-
der, right shoulder, spine mid), x and y axis vectors.
Length = {1 . . . , 16}

SpineBase, SpineMid,
Neck, Head,
SpineShoulder

1, raw MoCap data, x and y coordinates are extracted
to describe the postural change with respect to the
central axis. In addition, we utilise features proposed
in [7] (Euler Angles, Body Lean Angle and Centre-
of-Mass). These features represent the motion char-
acteristics, their associated skeleton form and do not
reference the environment to enable invariance. To
contribute these, and provide further context to the
motions being performed we include the Body Move-
ment Zone (BMZ), which represent the space occupied
by the participant.
Body Movement Zone: As in [9], we encode the

normalised total space volume occupied by the partic-
ipant full form skeleton over time. This is computed
by identifying the total space covered (or occupied) by
the skeleton per frame using standard volume meter-
squared calculations. For example, if the participant is
stable, with little movement, the BMZ value is small,
whereas with large variations in motion such as raising
of the arm, due to balance instability the value of the
BMZ increases.

2.2 Skeletal coordinate system

Data obtained via a MoCap system such as Vicon
or Depth Sensor technology is captured within a pre-
defined action space. To undertaken action analysis
and classification it is important to place the partic-
ipant skeletal structure at the centre the coordinate
system to become view-invariant. To achieve this, we
utilise the normalisation technique proposed in [10],
where the root joint (Hip Centre) for each frame is
subtracted from all other joints of the frame.

2.3 Labelling

In this approach we utilise supervised learning,
which requires data to be labelled prior to training.
To label the encoded set of features we employ the
digitalised automatic labelling methodology proposed
in Leightley et al. [7]. We refer the reader to [7] for a
detailed explanation of the labelling process. We de-
fined two classes, “good” and “unstable” performance,

with the aim to identifying instability associated with
the latter class. The labelling can be summarised as
follows: Each joint group is combined into a single to
represent the frame and motion as a whole for labelling.
Each motion was then reviewed to ensure that the class
assigned is suitable. The SD measures have been se-
lected based on the literature in the field of human
physiology and epidemiology.

2.4 Distance matrices representation

In our work, the aim is to develop a feature set
which is representative, informative and suitable to
train when using a DCNN. Following on from the suc-
cess of [11], we represent each encoded frame as a Eu-
clidean distance matrices. This results in a set of dis-
tance matrices representing each encoded frame which
are then passed to the classifier for training.

2.5 Constructing Deep Convolutional Neural
Networks

To enable effective, efficient and representative mo-
tion classification, a computational model must be de-
tailed and complex to provide the high performance.
Approaches have begun to adopt deep, complex and
highly representative models, termed DCNNs [12].
These are represented by the number of layers used
during the training phase. There is clear interest is
utilising DCNNs for recognition, classification and con-
textualising human motion represented via MoCap. A
DCNN is capable of recognising patterns which con-
tain varying degrees of shift, distortion and noise. We
utilise this unique characteristic of DCNN to classify
unstable motions from the patterns using derived fea-
tured in Table 1 and distance matrices.

To generate the model, we follow the proposal in
Ijjina et al. [13] and create a 4-layer DCNN model (Fig-
ure 1). The architecture is shown in Figure 1 with the
layer configuration listed in Table 2. We have used a
different layer configuration than that proposed in [13]
due to the increased dimensionality of the feature vec-
tor. Additionally, we set the Dropout rate at 0.5.
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Figure 1. The DCNNs is composed of 4-layers. Each of layer is a combination of convolution, sub sampling
and normalization, where the last layer is fully connected. The DCNNs takes a distance matrix as input and
propagates using a forward-pass and a backward-pass through the layers activating model neurons at each
layer. The output is a DCNN model.

Table 2. Configuration and feature map of the
proposed DCNN.

Layer: Configuration Feature map dimensions
C1: 4x4 templates F1: 24x24
S1: 3x3 templates F2: 12x12
C2: 3x3 templates F3: 10x10
S2: 3x4 templates F4: 5x5

I: 300 vector O: 2 outputs

We train the proposed model using a forward pass
and a backward pass approach, similar to that pro-
posed in [13]. Where C1, C2 represent the convolu-
tion layers, S1, S2 represent the sub-sampling layer,
F1, F2, F3, F4 represent the feature maps generated
for each layer and I and O denote the input and out-
put of the network. We also use a Sigmoid transfer
function as the activation function in all the neurons
and backpropagation algorithm for training.

3 Results: Identification

We evaluated the performance of DCNNs in identi-
fying each motion labelled as “unstable” compared to
a range of classical machine learning techniques. We
assessed the following approaches with standard cross-
validation parameter selection: Support Vector Ma-
chines, Random Forests, Boltzmann Machines, Adap-
tive Boosting, LPBoost, RUSBoost, Total Boost, Bag-
ging and Subspace. For each, a 10-fold cross-validation
using the random ‘leave-one-out’ technique was imple-
mented.

The K3Da Dataset [14] was used in this study, the
dataset consists of 500+ motions captured at 30Hz us-
ing the Kinect One sensor, these are clinically validated
motions based on the Short Physical Performance Bat-
tery test [15], it includes skeletal data, RGB data
streams and participant demographics. We selected
this dataset as it would not have been suitable to eval-
uate the proposed on gaming and/or action datasets
which do not contain clinically relevant motions [16].
The following motions were extracted from the K3Da
Dataset: Chair Rise, One-leg Balance (Eyes Open),
One-leg Balance (Eyes Closed) and Tandem Balance.

The results for each classifier are summarised in
Table 3. We found that DCNNs performs consis-
tently high when compared to other machine learn-
ing approaches. The average classification accuracy
is 96.20% (with median 96.85%) when compared to
ground truth labelling. Amongst the machine learn-

Table 3. Machine learning classification rate rep-
resented as the median and average for a random
10 iteration execution of the proposed method-
ology for correctly identifying “unstable” perfor-
mance and “good” performance.

Iteration: Median Mean
SVM 90.95 91.10
RF 90.09 89.66
AdaBoost 82.87 84.26
LPBoost 71.03 72.22
RUSBoost 62.35 63.39
Total Boost 78.92 80.25
Bagging 72.61 73.83
SubSpace KNN 81.29 82.65
GRBM 82.50 81.27
DCNNs 96.32 96.20

ing approaches, SVM has the closest result to DCNNs,
with the accuracy of 91.10% (median 90.95%). The
poorest performance was obtained by RUSBoost, with
accuracy of 63.39% (median 62.35%). These results
suggest that DCNNs is capable of identifying unstable
motions with minimum error.

We were able to detect a large number of motions
which had been identified as unstable using DCNN
(Table 3). Each motion will be discussed hereafter.

Chair Rise each participant started from a seated
position. When prompted, they had to stand up so
that the legs were fully extended, and then sit down
again. This was repeated five times. The classification
was highest amongst all motions, we speculate this is
due to its unique characteristics in comparison to other
motions reducing the inter-/intra class variations.

One-leg Balance (Eyes Open) participants stood
with one foot five inches off the floor. They balanced
with their eyes open and arms extended horizontally to
be parallel with the floor. Classification was robust for
this motion, however, inter-class confusion was present
between One-leg Balance (Eyes Closed) due to large
similarities between the motion type and styles of ex-
ecution.

One-leg Balance (Eyes Closed) participants
stood with one foot five inches off the floor. They bal-
anced with their eyes closed and arms extended hori-
zontally to be parallel with the floor. Again, classifica-
tion was good for this motion. Unlike One-leg Balance
(Eyes Open), classification was high due to variation
of the motions undertaken by participants.
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Tandem Balance each participant placed one foot
directly behind the other so that the big toe of the back
foot was touching the back heel of the front foot. The
arms were fully extended horizontally for a period of 10
seconds. A high sensitivity was achieved, however low
scores for specificity and MCC point towards confusion
amongst the identifying and correctly associating poor
performance.

The results demonstrate that with the proposed
framework it is possible to use DCNNs to identify mo-
tions which were unstable or executed stable. This of-
fers a vital insight for clinicians to tailor rehabilitation
programmes for each individual, focusing on motions
which the individual finds difficult.

4 Conclusion

In this work, we propose a method for identifying
unstable motions with features extracted from MoCap
using Deep Convolutional Neural Networks. Experi-
mental results demonstrate our proposed feature set
combined with deep learning provides a high classi-
fication accuracy and could provide greater insights
for a clinician in developing rehabilitation strategies
or to aid in confidence boosting. The ability of DC-
NNs to recognise motions over other standard machine
learning techniques is apparent for our experiments.
Further, DCNNs can handle mis-formed skeletal poses
provided by the Kinect and accounted for noise in the
data. Future work will seek to extend DCNNs to han-
dle a large number of classes, develop a wide range of
dynamic features and improve insights to the clinician.
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