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Abstract 

Video synopsis has been shown its promising perfor-
mance in visual surveillance, but the rearranged 
foreground objects may disorderly occlude to each other 
which makes end users hard to identify the targets. In this 
paper, a novel event based video synopsis method is 
proposed by using the clustering results of trajectories of 
foreground objects. To represent the kinematic events of 
each trajectory, trajectory kinematics descriptors are 
applied. Then, affinity propagation is used to cluster 
trajectories with similar kinematic events. Finally, each 
kinematic event group is used to generate an event based 
synopsis video. As shown in the experiments, the gener-
ated event based synopsis videos can effectively and 
efficiently reduce the lengths of the surveillance videos 
and are much clear for browsing compared to the 
states-of-the-art video synopsis methods. 

1. Introduction 

With the increasing number of surveillance cameras, 
browsing videos of these cameras for event retrieval costs 
a lot of human resources. Providing a new browsing way 
to help end users to effectively and efficiently review the 
videos in a short time becomes an important issue in 
visual surveillance. One of the most naïve ways to browse 
surveillance videos is the time lapse videos constructed by 
using uniform sampling. However, the moving velocities 
and behaviors of objects in surveillance videos are dif-
ferent. As a result, motion information of time lapse 
videos will disappear.  

To solve aforementioned problems, video synopsis 
[1][2][3][4] suggests an alternative approach by rear-
ranging all foreground objects into a condensed video. 
Although video synopsis can effectively shorten the video 
lengths for browsing, each frame of the synopsis video 
will contain a lot of foreground objects with different 
motion behaviors as shown in Figure 1(a). These crowded 
foreground objects will lead to occlusion and visibility 
problems during browsing. To avoid these problems, 
event based video synopsis is proposed which can reveal 
foreground objects of the same motion behavior as shown 
in Figure 1(b). Thus, the event based video synopsis can 
achieve better visual quality for browsing.  

Recently, Pritch et al. [5] cluster foreground objects 
which have similar appearances and motions to several 
groups by using spectral clustering [6]. Based on the 
clustering results, synopsis videos for each cluster are 

generated by using Markov random field optimization [7]. 
Nevertheless, the number of clusters needs to be assigned. 
Moreover, the appearance and motion features are easily 
affected by the lengths of trajectories of foreground ob-
jects. Their method also suffers from the same 
computational complexity problem as [1]. To obtain the 
number of groups in advance, Chou et al. [8] consider the 
numbers of entrances and exits to obtain event groups. 
The distances between trajectories are defined by the 
longest common subsequence [9]. Hierarchical clustering 
is adopted to group trajectories of similar events for video 
synopsis. Nevertheless, the entrances and exits are not 
generally available for outdoor environments.  

In this paper, a novel event based surveillance video 
synopsis method is proposed which includes trajectory 
kinematics representation, trajectory event clustering, and 
synopsis video generation. To effectively represent the 
kinematic properties of trajectories, trajectory kinematics 
descriptor (TKD) [10] is applied. With the similarities 
between TKDs of trajectories, affinity propagation [11] is 
then applied to cluster trajectories of similar kinematic 
events. To achieve real-time performance, a synopsis 
table introduced in [4] is applied which can efficiently 
rearrange foreground objects with similar kinematic 
events to generate the event based synopsis videos. As 
shown in the experiments, our method can successfully 
generate the event based synopsis videos in real-time with 
better visual readability. 

2. Method 

2.1.  Trajectory Representation  
To represent each trajectory and compare the distance 

between two trajectories, trajectory kinematics descriptor 
(TKD) [10] is applied, which can overcome the length 
problem of trajectory comparison. TKD assumes that 
each foreground object moves in a three-dimensional 

(a) (b) 
Figure 1. The sampled frames of (a) the synopsis 
video and (b) the event based synopsis video. 
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Euclidean space 3ℜ  and imposes Frenet-Serret frames 
[11] to construct the descriptor of the trajectory.  

After foreground object extraction and tracking [4], a 
trajectory ri of the ith foreground object Oi is represented 
as ri = {ri(ts),…, ri(t),…, ri(te)} in the Euclidean space, 
where ri(t) represents the image center positions of Oi in 
frame t, and ts and te are the first and latest appearing 
frames of ri. Please note that ts and te of each trajectory 
can be different. Let si(t) be the arc length of ri defined as: 
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where ri'(∙) is the velocity vector. TKD applies the Fre-
net-Serret frame from the point of view of the foreground 
object to describe the kinematic properties. The tth tan-
gent unit vector T(t), normal unit vector N(t), and 
binormal unit vector B(t) unit vectors of the tth Frenet- 
Serret frame are defined as follows:  
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The unit vectors Ti(t), Ni(t), and Bi(t) form an orthonor-
mal basis of 3ℜ . Then, the normalized histograms h(Ti), 
h(Ni) and h(Bi) of the three unit vectors Ti, Ni and Bi are 
constructed. The TKD h(ri) of ri is defined by composing 
h(Ti), h(Ni) and h(Bi) as follows: 

h(ri) = [h(Ti) h(Ni) h(Bi)].          (5) 

With TKD, each trajectory ri is transferred to a descriptor 
h(ri) which has the same length for comparison. 

2.2.  Event Clustering 
Because TKD represents the kinematic properties of 

trajectories, they can be used to identify trajectories of 
similar kinematic events. To group trajectories of similar 
kinematic events, we apply affinity propagation [11] with 
TKDs. Affinity propagation considers each TKD as an 
exemplar. To find clusters, two kinds of messages, respon-
sibility and availability, sent from each TKD to the 
remaining TKDs are used. By updating the messages, the 
current affinity reflects the score that one TKD prefers 
another TKD as its exemplar. Unlike most clustering algo-
rithms, a fixed number of potential clusters is not required 
in advance. To perform clustering, the affinity matrix s is 
constructed at first. Each element s(i, j) of s represents the 
similarity between two trajectories ri and rj and is defined 
as follows:  

,),( ),()()( jiji deejis rrrhrh −−− +=           (6) 

where ||h(ri) – h(rj)|| is the distance between two TKDs, 
and d(ri, rj) is the difference between the positions of the 

first and latest appearing frames of ri and rj, respectively. 
Here, d(ri, rj) is defined as follows:  
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Based on s(i, j), the responsibility r(i, j) between trajecto-
ries ri and rj is defined as follows: 
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If two trajectories are similar, r(i, j) will become larger 
which indicates that ri is suitable to represent rj based on 
the similarity. The availability a(i, j) of ri and rj is defined 
as follows:   
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Finally, the self-availability is defined as: 
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By continuously exchanging the responsibility and availa-
bility messages between TKDs of different foreground 
objects, the corresponding exemplar of rj is obtained by  
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where rj* and ri belong to the same event group. As a 
result, events of trajectories with similar TKDs will be 
clustered to the same group. 

2.3.  Event based Surveillance Video Synopsis  
After affinity propagation, the trajectories in the video 

are separated into K groups and represented as G = 
{G1, …, Gk, …, GK}, where G is the union of all groups 
and Gk is the kth group of G. Because each group Gk 
contains trajectories of similar kinematic events, we 
generate the synopsis video SVk for each Gk. To effec-
tively arrange the temporal positions of the foreground 
objects in Gk, we construct a synopsis table Tk [4], which 
stores the latest occupied time slots for each pixel (x, y) 
in the synopsis video.  

Because a trajectory represents continuous spatial and 
temporal changes of a foreground object, the appearing 
order of the instances of the trajectory is fixed to avoid 
the discontinuity or jittering of the foreground object in 
the synopsis video. Two situations need to be considered 
during arranging ri to SVk including that ri is firstly ar-
ranged in SVk and a part of ri is already arranged in SVk, 
respectively. The synopsis table Tk here is used to record 
the aforementioned information. Let the initial values of 
elements of Tk be 0. The temporal location TL(ri(t)) of 
ri(t) is defined as follows: 
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where s' is the latest available temporal location, which 
will not occlude previous appearing foreground objects in 
SVk and is defined as follows: 
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where F(ri(t)) represents the union of pixels of the fore-
ground object in the trajectory ri(t), and (x, y) is the pixel 
location. Because s' is located after the latest occupied 
location, ri will not occlude previously appearing fore-
ground objects. If ri(t–1) is arranged in SVk, ri(t) needs to 
appear at the next frame of ri(t–1) to avoid the foreground 
fragments. After assigning the temporal location for each 
element of the trajectory, Tk is updated to record the most 
recent occupied time slots for (x, y) in SVk as follows: 
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Based on the synopsis table, the temporal locations of 
each trajectory can be computed without nonlinear opti-
mization as shown in [1][2]. Then, each foreground 
object is sequentially stitched on the synopsis video 
based on the temporal location of Eq. (14) and its trajec-
tory. Please note that we generate a synopsis video SVk 
for each group Gk to provide users browsing the synopsis 
videos with different kinematic events. 

3. Experimental Results 

3.1.  Datasets 

We used four surveillance videos in [4] for evaluation 
including three outdoor and one indoor videos. The res-
olutions of these videos are 320×240 and the numbers of 
frames are shown in Table 1. For quantitative compari-
sons, the frame reduction rate (FR) is defined as: 

)(#

)(#
1

VF

SVF
FR

K

k
k

== ,             (15) 

where #F(SVk) and #F(V) are the numbers of frames of 
SVk and V, respectively, and K is the number of clusters 
obtained by affinity propagation [11]. The method is 
implemented on an Intel i7 3.4-GHz CPU with 16-GB 
memory computer. 

3.2.  Results 
Table 1 shows the numbers of objects and frames of 

four sampled event based synopsis videos. The FR and 
average frame per second (FPS) for each evaluation video 
are shown in Table 2. Because each event based synopsis 
video contains few foreground objects with the similar 
kinematic behavior compared to [4], the FR of the pro-
posed method is less than that of [4]. The FPS of the 
proposed method is lower than that of [4], because of the 
computation of TKDs and affinity propagation.  

Figure 2(a) shows the synopsis results of [4]. Different 
kinds of kinematic events, i.e. vehicles move to different 
directions, disorderly appear in the video frame. In con-
trast, the proposed method can generate an event based 
synopsis video for the higher velocity vehicle flow mov-
ing from the left side to the right side based on the 
clustering results as shown in Figure 2(b). Figure 2(c) 

shows the lower velocity vehicle flow but the same mov-
ing direction as the vehicles in Figure 2(b). Figure 2(d) 
shows the vehicle flow from the right side to the left side 
with similar velocities. Finally, Figure 2(e) shows the 
turning vehicle flow. Thus, different kinds of kinematic 
events can be revealed in different synopsis videos for 
browsing compared to traditional video synopsis methods. 
Figure 3(a) show all of the different kinds of kinematic 
events in the same frame of [4]. In Figure 3(b), the pedes-
trians walk toward to the upper right of the scene in the 
event based synopsis video. The pedestrians in Figure 3(c) 
walk from the upper right of the scene to the bottom of 
the scene. Figure 3(d) and (e) show the different moving 
directions of pedestrians. These cases show the effective-
ness of TKD in distinguishing behaviors. Figure 4(b) and 
(c) show individual pedestrians and crowd pedestrians. 
Figure 4(d) shows the pedestrians moving in the opposite 
direction compared to Figure 4(b) and (c). Because mo-
torcycles and bicycles have faster moving velocities 
compared to pedestrians, they belong to a different kine-
matic event group and are shown in a different event 
based synopsis video in Figure 4(e). In Figure 5, different 
kinds of moving directions of pedestrians are revealed in 
different event based synopsis videos. Due to limited 
space, please refer to the demo video, which is available 
at http://cvml.cs.nchu.edu.tw/EventVideoSynopsis.htm.  

4. Conclusions  

In this paper, we propose a new event based video 
synopsis method, which can separate foreground objects 
with different kinematic events to different synopsis vid-
eos. The results can reduce the burden of end users when 

Table 1. The number of objects and frames of the 
event based synopsis videos. 

Video 
Original Synopsis Video

# of Frames # of Objects # of Frames 

Crossroad 70195 

48 425 
55 305 
43 250 
23 469 

Street 79449 

210 2863 
159 3815 
118 1742 
227 9313 

Sidewalk 104864 

47 1414 
76 5328 
95 520 

109 1543 

Hall 66771 

61 2074 
44 2617 
53 976 
39 470 

Table 2. The comparison metrics. 
Video [4] Proposed 

 FR FPS FR FPS 
Crossroad 0.181 71.43 0.021 52.73 

Street 0.237 66.67 0.236 84.61 
Sidewalk 0.215 71.43 0.058 18.60 

Hall 0.174 71.43 0.132 26.04 
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browsing the synopsis videos and make the users easily 
focus on specific events. In the future, we will apply more 
high level descriptors of foreground objects and scenes to 
provide event based synopsis videos which comply with 
human semantics.  
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(a) (b) (c) (d) (e) 

Figure 2. Results of the crossroad video. (a) Synopsis video in [4], (b) SV1 of G1, (c) SV2 of G2 , (d) SV3 of G3 , (e) SV4 of G4.

   
(a) (b) (c) (d) (e) 

Figure 3. Results of the street video. (a) Synopsis video in [4], (b) SV1 of G1, (c) SV2 of G2 , (d) SV3 of G3 , (e) SV4 of G4. 

   
(a) (b) (c) (d) (e) 

Figure 4. Results of the sidewalk video. (a) Synopsis video in [4], (b) SV1 of G1, (c) SV2 of G2 , (d) SV3 of G3 , (e) SV4 of G4.

   
(a) (b) (c) (d) (e) 

Figure 5. Results of the hall video. (a) Synopsis video in [4], (b) SV1 of G1, (c) SV2 of G2 , (d) SV3 of G3 , (e) SV4 of G4. 
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