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Abstract

Automated cell classification is an important
machine vision problem with significant benefits to
biomedicine. We propose an efficient high-accuracy
framework to classify cells based on bright-field and
phase images using deep learning. With carefully de-
signed network architecture and parameters, our net-
work extracts features from single-cell images hierar-
chically and performs classification jointly. It can iden-
tify different types of cells without any human interven-
tion and biological or hand-crafted features. Our ex-
periments show that the system achieves a mean class
accuracy of 96.5% on the single-cell images captured
by an ultrafast time-stretch imager.

1 Introduction

Cell classification is of fundamental importance to
personalized medicine, cancer diagnostics, and disease
prevention, since the proportion of different types of
cells provides important evidence for illness treatment.
However, classifying different types of cells with high
accuracy and speed is challenging, given the occlusion
of other cells, apparent variation in shape and size, and
effects from the external environment. Also, illumina-
tion variations, which cause the contrast between cell
boundary and background to vary, have a detrimental
effect on the accuracy of cell detection. Single-cell-
based classification has its own additional challenges.
Unlike cells in tissue, individual cells have similarly
round shapes, making it a tough task to distinguish
among different types.

To achieve the goal of identifying cells with high ac-
curacy and speed from single-cell images, we propose
to use deep learning methods. Convolutional neural
networks (CNNs) have shown great potential in the
field of image classification in recent years. One sig-
nificant advantage of using CNN-based models is that
the networks are able to learn distinguishing features
automatically without human intervention. They are
more versatile than hand-crafted features, leading to
CNN generally outperforming traditional methods in
image classification [1, 2] and object detection [3, 4].

Despite CNN’s success, there are several challenges
in using this framework to different applications such
as cell images. First, CNNs require a large amount of
data, since a large number of parameters need to be
learned. Second, the intraclass variations are small
since different types of cells have very similar ap-
pearances. Therefore, optimizing hyper-parameters of
CNNs for cell images training data generally leads to
overfitting and bias.

In this work, we overcome the challenges of CNNs
for cell identification and propose some strategies to

reduce the influence of these shortcomings. We outline
a practical way to use CNN to learn useful features
among different types of cells and then classify new
cells automatically. This paper has the following con-
tributions: 1) We propose a network based on CNNs
for cell identification, which is shown to be effective on
a single-cell dataset, and further outline details for how
to construct the model with appropriate structures. 2)
We propose a novel channel augmentation strategy via
cascading several relevant images together. Our re-
sults show that this strategy contributes to extracting
distinguishable features, further improving the classi-
fication accuracy.

2 Related Work

Various methods have been proposed for cell classifi-
cation. A popular framework for these approaches is 1)
feature extraction, 2) cell classification. An early work
proposed by Perner et al. [5] introduced data mining
techniques into image analysis. Relevant features are
extracted among a large number of features found by
image analysis. These relevant features are then in-
putted into a classifier. Later, Theera-Umpon [6] pre-
sented an automatic technique to extract four features
from segmented nucleus and cytoplasm of bone mar-
row WBC and all four features are then classified by
neural network. Foggia et al. [7] presented a heteroge-
neous set of features with Local Binary Patterns (LBP)
to describe the mitotic cells and then used five clas-
sifiers to classify cells based on these features. The
framework proposed by Nosaka and Fukui [8] com-
bines a novel descriptor, i.e. Rotation Invariant Co-
Occurrence among adjacent LBP (RIC-LBP), with a
traditional multi-class SVM. The framework is invari-
ant to local and global rotations of the cell image. All
these approaches need manual features, which may suf-
fer from intrinsic limitations related to human observa-
tions, and thus automatic classification with computer
vision techniques is highly desirable.

Recently, deep learning approaches achieve great
success especially after deep CNNs have been applied
to classify images at a large scale [1]. One important
reason is that deep CNNs have strong capacities to
learn representational features not only including low
and middle levels but also high-level vision ones. A
straightforward application for cell classification using
CNNs was proposed by Bayramoglu et al. [9] who im-
proved classification accuracy by conducting different
strategies for enhancing, augmenting and processing
training data. The framework from Gao et al. [10] uti-
lized three convolutional layers followed by two fully-
connected layers to get better adaptability. Li et
al. [11] explored extra cell images targeting on cross-
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specimen analysis. They proposed deep convolutional
architecture and evaluated on ICPR 2014 dataset. The
main novelty pertains to the data augmentation step,
which is performed by adding new specimens.

In this paper, we propose a CNN-based framework
which receives single-cell images from the Quantitative
Phase Imaging (QPI) system on FPGA and classifies
them automatically. The QPI system [12, 13] records
four single-angle images (bright-field images) of each
cell with four fiber coupling angles and extracts phase
image from these bright-field images [14, 15]. Our
framework acquires all these five types of cell images
from QPI imaging system. Experiments show that the
framework is able to achieve high accuracy.

3 Single-cell Dataset and Preprocessing

3.1 Single-cell dataset

To evaluate the effectiveness of our CNN-based mod-
els, we test it on the single-cell image dataset obtained
from the QPI system. For each cell, the system gets
four bright-field images recorded from different angles.
According to [15], the phase image φ(x, y) is calculated
by

φ(x, y) = Im

[
F−1

{
C , κx = κy = 0

F{G(x,y)·FOV}
2π·(κx+iκy)

, otherwise

}]
,

(1)
where F and F−1 correspond to forward and inverse
Fourier Transform and (κx+iκy) indicates Fourier spa-
tial frequencies normalized as a linear ramp. C is an
arbitrary integration constant, and FOV is the image
field of view expressed in physical units. The complex
phase shift G(x, y) is calculated by

G(x, y) = Oφx + i · Oφy, (2)

where (Oφx,Oφy) is the local phase shift obtained from
four bright-field images. We have collected five types
of cells: MCF7, OAC, OST, PBMC and THP1. The
whole dataset includes 2500 images (500 images per
type) and the size of each image is 305 × 305 × 5
which is obtained by combining 4 types of bright-field
images and a phase image. Figure 1 shows a few typ-
ical examples of cells of various classes. Each column
represents a specific type of cell while each row rep-
resents a specific type of bright-field image or phase
image. Regardless what type the cells belong to, they
have similarly round outline when flowing through the
imaging system, making identification task challeng-
ing.

3.2 Channel augmentation

The cell images are first preprocessed by performing
channel augmentation and intensity normalization. In
particular, they are cascaded an additional channel of
information and then each pixel in each channel is nor-
malized to a number between 0 and 1.

In our imaging system, each cell is imaged with 4
different fiber coupling angles. Besides being used to
compute the phase image, the 4 bright-field images by
themselves may also provide additional information for

Figure 1: Examples of single-cell images dataset. Each col-
umn represents a specific type (From left to right: MCF7,
OAC, OST, PBMC and THP1.) and each row exhibits a
specific channel.

classifying cell images. We thus also evaluate the effec-
tiveness of employing them as additional imaging chan-
nels. Just as a color image has RGB channels, the cas-
caded image possesses high channel dimensions. Given
that four types of bright-field images are collected from
four different directions of cells, the cascaded images
contain more angular information and the phase infor-
mation benefit the network in learning better features.
Channel augmentation aiming to enrich information of
each individual image does not increase the size of the
dataset used for training. However, it helps to train
an effective model taking more information into con-
sideration. Table 1 shows that compared with single
channel or phase, images after channel augmentation
processing contribute a 1% to 7% accuracy improve-
ment, which reflects this augmentation strategy is ef-
fective for cell classification.

4 Network Design

We now focus on the design of the neural network
and how to tune the structure to obtain a robust model
to avoid overfitting. Traditional CNNs are hierarchi-
cal networks composed of two parts: feature extraction
and a classifier. One of the most important layers in
feature extraction is a convolutional layer, which lever-
ages on three properties, namely sparse interactions,
parameter sharing, and equivariant representations to
extract transform invariant features to improve ma-
chine learning systems. The whole framework of our
model is presented in Figure 2.

Considering that translation and rotation of cells
may be present in images, we first utilize the properties
of the traditional convolution layer to extract robust
and invariant features for these variations. The chan-
nel augmentation process also introduces more angular
information into these features as well. Second, a 2:1
downsampling max-pooling layer is used to make the
output less redundant. After the pooling layer, there
is a batch normalization layer. According to Ioffe and
Szegedy’s recent work [16], the batch normalization
layer is effective to avoid overfitting. Experimental re-
sults presented in Figure 3 and Figure 4 provide strong
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Figure 2: The structure of CNN-based model for cell identification.
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Figure 3: Training loss curves with and without the batch
normalization layer.
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Figure 4: Training accuracy curves with and without the
batch normalization layer.

evidence that with the batch normalization layer be-
hind the active layer, the network can reach a better
optimal point with lower loss and higher accuracy. We
treat these three connected layers as a basic feature
extraction unit, what we call a “block”, from which
we obtain more robust outputs. Figure 2 exhibits the
detailed structure of blocks marked with the red dash
line. Next, different blocks are cascaded hierarchically
to extract high-level features. These abstract features
are more distinguishable after three blocks of learning,
and then they are fed into the two fully connected lay-
ers to classify cells.

5 Experiments

We use Caffe [17] to implement our CNN model. An
Nvidia 980Ti graphics card is used to train the model

Table 1: Classification accuracy using our proposed method

Aspects
Average Accuracy
validation test

channel 1 0.94 0.94
channel 2 0.96 0.95
channel 3 0.94 0.96
channel 4 0.94 0.92
channel 1-4 0.96 0.93
phase only 0.93 0.90
channel 1-4 & phase 0.97 0.97

with standard back-propagation, using SGD proce-
dure. We randomly partition the cell images into three
subsets, that is, 76% for training, 8% for validation,
and 16% for test. This partition is utilized to all ex-
periments. The network is trained using the minibatch
stochastic gradient descent with a momentum factor of
0.9. Each iteration operates on a minibatch of 50 im-
ages that are sampled randomly from the training set.
The network is trained for 12,000 iterations with a base
learning rate of 0.01. The learning rate changes from
0.01 to 0.0001 after 500 iterations. After each round of
the iterations in the training process, the layer param-
eters are updated based on the misclassification loss.

As mentioned, the bright-field images introduce an-
gular information into the extracted features, since
they are acquired from various directions. Therefore,
a reasonable assumption is that by combining differ-
ent types of bright-field images and phase images, the
extracted features should be more distinguishable. To
examine this assumption, we train the model several
times with different inputs. First, four types of bright-
field images are fed into the model respectively, and af-
ter several rounds of training, when the validation loss
converges, we run the model using our test set. Next,
all four types of bright-field images have been cascaded
together in the third (channel) dimension and thus we
obtain cascaded images with size 305 × 305 × 4. We
repeat the previous train-test procedure using the cas-
caded images. Results from Table 1 indicate that only
integrating bright-field images provides little help to
classification accuracy.

To further improve the performance of our network,
we introduce the phase images which have been calcu-
lated from bright-field images. In order to demonstrate
the usefulness of the phase images, an experimental
comparative study has been conducted via training the
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network with or without phase images.
Table 2 and Table 3 exhibit the precision and re-

call of cell classification results. They are calculated in
a one-against-others manner. For example, the preci-
sion of THP1 is calculated by considering THP1 cells
as positive instances and all the other cells as nega-
tive instances. Each row represents different training
inputs and each column represents the precision or re-
call values of corresponding cell type. It is clear that
our proposed classification framework is highly sensi-
tive to each type of cells and with the help of chan-
nel augmentation it can achieve an overall best per-
formance by combining bright-field images and phase
images together.

Table 2: Precision of test

Aspects
Precision of each class

test
THP1 OAC MCF7 PBMC OST

channel 1 0.8429 0.9551 1.000 0.8795 1.000
channel 2 0.9296 0.9872 0.9868 0.8588 0.9889
channel 3 0.9444 0.9753 1.000 0.9255 0.9753
channel 4 0.7838 0.9773 0.9880 0.8462 0.9870
channel 1-4 1.000 0.9859 0.9767 0.7907 0.9259
phase 0.8571 0.9167 0.9870 0.8642 0.8642
channel 1-4
&phase 1.000 1.000 0.9524 0.9351 0.9324

Table 3: Recall of test

Aspects
Recall of each class

test
THP1 OAC MCF7 PBMC OST

channel 1 0.8551 1.000 0.9634 0.9012 0.9518
channel 2 0.8354 0.9872 1.000 0.9359 0.9889
channel 3 0.8947 0.9875 1.000 0.9355 1.000
channel 4 0.7945 1.000 1.000 0.8048 0.9870
channel 1-4 0.9870 0.9859 0.9882 0.9189 0.8065
phase 0.8571 0.8652 1.000 0.8642 0.9091
channel 1-4
&phase 0.9756 0.9770 1.000 0.9351 0.9324

6 Conclusion

In this paper, we developed a CNN-based model
to classify single-cell images. In particular, we in-
vestigated the effect of channel augmentation strate-
gies and we also compared the classification results
with or without phase images and proved that channel
augmentation was helpful to obtain better configura-
tion of the network. Our results show that our CNN-
based model is effective and can achieve high accu-
racy on single-cell image classification. This work was
supported in part by the NSFC/RGC under Project
N HKU714/13, and GRF 17245716, and the Croucher
Innovation Award.
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epithelial type 2 cell classification with convolutional
neural networks,” in IEEE International Conference
on Bioinformatics and Bioengineering, January 2016,
pp. 1–6.

[10] Z. Gao, J. Zhang, L. Zhou, and L. Wang, “HEp-2
cell image classification with convolutional neural net-
works,” in IEEE Workshop on Pattern Recognition
Techniques for Indirect Immunofluorescence Images,
December 2014, pp. 24–28.

[11] H. Li, J. Zhang, and W.-S. Zheng, “Deep CNNs for
HEp-2 cells classification: A cross-specimen analysis,”
arXiv:1604.05816, April 2016.

[12] A. K. Lau et al., “Interferometric time-stretch mi-
croscopy for ultrafast quantitative cellular and tissue
imaging at 1 µm,” Journal of Biomedical Optics, vol. 19,
p. 076001, July 2014.

[13] J. Wu et al., “Ultrafast laser-scanning time-stretch
imaging at visible wavelengths,” Light: Science & Ap-
plications, vol. 6, p. e16196, January 2017.

[14] T. T. Wong et al., “Asymmetric-detection time-stretch
optical microscopy (ATOM) for high-contrast and high-
speed microfluidic cellular imaging,” Scientific Reports,
vol. 4, p. 3656, January 2014.

[15] J. Xie, X. Niu, A. K. Lau, K. K. Tsia, and H. K. So,
“Accelerated cell imaging and classification on FPGAs
for quantitative-phase asymmetric-detection time-stre-
tch optical microscopy,” in IEEE International Con-
ference on Field Programmable Technology, December
2016, pp. 1–8.

[16] S. Ioffe and C. Szegedy, “Batch normalization: Ac-
celerating deep network training by reducing internal
covariate shift,” arXiv:1502.03167, March 2015.

[17] Y. Jia et al., “Caffe: Convolutional architecture for
fast feature embedding,” in ACM International Con-
ference on Multimedia, November 2014, pp. 675–678.

167


