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Abstract  

Iterative Closest Point is a vital method in registration 
of point clouds. It runs slowly in case of large point clouds. 
In this article, we propose the Bi-Direction ICP in a 2D 

plane. The rotation model is used to complete Bi-Direction 
ICP in 3D space. Bi-Direction ICP decreases the iteration 

times by expanding each step angle width.  This method 
concentrates on shortening the running time of ICP without 
losing the accuracy. Applied Bi-Direction ICP into 

Stanford 3D Scanning Repository and Mian’s datasets, the 
registration running speed is 2.7 times at most of that in 

ICP. A subtle improvement occurs in the aspect of accuracy, 
compared to ICP. 

1. Introduction  

In registration of point clouds, it merges the model 
point set and moving point set into a point set. Iterative 
Closest Point is proposed by Besl and McKay [1]. In their 
method, a point in model point set and the closest point in 
the moving point set form a point-pair. The rotation 
matrix and the translation vector between the point clouds 
are get by minimizing the energy function. The energy 
function is the sum of the L2 norm of the point-pairs.  

Despite of ICP’s simplicity and good performance in 
practice, ICP becomes slow while the number of points 
goes up in the point clouds. To reduce the running time of 
ICP, papers are put up with many methods to search the 
point-pair fast and robust. Jon Louis Bentley [2] develops 
the k-d tree method to search the nearest point. Michael 
Greenspan and Mike Yurick [3] present a depth-first non-
tentative search to the k-d tree structure. Timothee Jost 
and Heinz Hugli [4] propose heuristic closest point search 
method to decrease the complexity of searching the 
closest point. They extend the number of points to 30000 
[4]. Instead of finding the search fast and robust, these 
methods still spend much time while the iteration times 
don’t change. In this paper, we proposed the first method 
to reduce the iteration times to get a faster speed than ICP.  

There are other ways to optimize the running speed. S. 
M. Yamany, M. N. Ahmed, E. E. Hemayed and A. A. 
Farag [5] proposed the grid closest point transform to get 
a fast registration of point clouds. In their method, it needs 
to calculate the grid to search the closest point.  

C.A. Kapoutsis, C.P. Vavoulidis and I. Pitas [6] put up 
with Voronoi tessellation method under Euclidean 
distance metric. Meanwhile, Voronoi map is a dual of 
Delaunay triangulation. Meanwhile, k-d tree search is 
replaced by Delaunay triangulations in the paper [7]. D. 
Eggert and S. Dalyot [7] use the Delaunay triangulation 

to increase computation efficiency in handling of data 
with ICP. With the use of triangulation in the Stanford 
bunny point cloud, they get an accurate result of 
registration.  

In this paper, we wanted to reduce the iteration times 
we spent on registration. Since the formers contribute to 
getting the closest points fast and precisely in each step, 
they neglect that too many iteration times run in ICP 
before it stops. We focused our method on reducing the 
iteration times to get fewer iteration times. In 2D plane 
registration, we registered the point clouds in bi-direction 
and moved the moving point set with a merged rotation 
matrix of the bi-direction rotation matrixes. However, 
when it comes to 3D space, it may be trapped into a local 
dilemma. To solve this, we set up a rotation model to 
analyze 3D point cloud registration and use Principle 
Component Analysis (PCA) to do coarse registration. 
Then, we completed our method.   

In our experiment, ICP was realized with Delaunay 
Triangulation and SVD. We applied ICP into Stanford 3D 
Scanning Repository [8] and Mian’s datasets [9] to get a 
comparison to our methods. Based on this, we get the Bi-
Direction ICP and apply it into the former datasets. 
Compared the results of our methods with the results of 
ICP, we get a fast method on running speed and a subtle 
improvement on accuracy.  

We introduced the optimization of iteration times first 
and then, with the use of Delaunay triangulation and SVD, 
it turned out to be an accurate result.   

In [12], Shaoyi et. al. improved the energy function 
with a bi-directional method to integrate the differences 
of ICP in two directions, which has no contributions to 
speed-up.  Our bi-direction method is applied in the ICP 
process to expand the angle width of each ICP step, which 
shortens the time of registration. 

This paper is organized as follows. Section 2 begins 
with an overview of the ICP work. Section 2.1 and 2.2 
explain the ICP and the rotation angle in each iteration. 
Section 3 illustrates our method. Section3.1 and 3.2 
explain our method in 2D plane and 3D space. Section 3.3 
supplements the iteratively reweighted least square (IRLS) 
method [10] to gain an accurate result. Section 4 
illustrates the experiment results of our method and ICP. 
In Section 5, conclusions are drawn and future work is 
discussed.  

2. Iterative Closest Point (ICP)  

Besl and McKay propose the Iterative Closest Point 
(ICP) to merge the model point cloud and the moving 
point cloud [1]. Suppose the model point cloud 
M={pi,i=1,2,…|M|} and the moving point cloud 
N={qj,j=1,2,…|N|}, and what we need is to find the pair 
point of pi in N. 
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2.1. ICP in Cartesian Coordinate System  

For each point pi, we need to find the closest point qi in 
N and pi-qi forms a point-pair. Then, we get a set of point-
pairs. The correspondence point-pairs contribute to the 
energy function with the rotation matrix R and translation 
vector T: E=sum((pi-qi’)2)/|M|, where the transform 
equation qi’=Rqi+T.  E is also named as a distance 
function.  

When the E is the minimum, the R and T meet the 
demand. The optimal equation is:  

(R,T)=arg(R,T) min E                        (1)  
Once the point-pairs are found, we can get the R with 

singular value decomposition (SVD) and T with the mean 
translation of the closest point set. The rotation matrix is 
essential in Bi-Direction ICP.  

2.2. ICP with Quaternions  

Berthold K. P. Horn [11] presents a closed-form 
solution of absolute orientation using quaternions. Let Q 
take the place of the related quaternions, which shows:  

Q= qr+qii+qjj+qkk and,  

� =2arccos qr=2arcsin sqrt(qi
2+ qj

2+ qk
2)       (2)  

shows in Figure 1.  

 

Figure 1: �̂ spins by the angle �. 

The related rotation matrix is:                                         
1-2qj

2-2qk
2   2(qiqj-qkqr)  2(qiqj+qkqr)   

R=        2(qiqj+qkqr)  1-2qi
2-2qk

2  2(qjqk-qiqr)  
             2(qiqk-qjqr)   2(qjqk-qiqr)  1-2qi

2-2qj
2  

By this way, the rotation matrix in ICP process can be 
shown with the rotation angle �. Angle error also judges 
the result of registration. 

3. Bi-Direction ICP (bi-ICP) 

With the rotation angle in each ICP iteration, we can 
get a set of angles. Suppose the angle set S={�i ;i∊ℕ*}, 

     
    Figure 2: the red points and blue points belong to two point clouds. O               
and O' are the centers of the two sets. A and B are a true point-pair.  

the i means the i-th iteration in the ICP. We discuss the 
variation of S in this part. Moreover, we apply the Bi-
Direction in the plane and 3D space with a rotation model. 

3.1. Bi-Direction ICP in 2D Plane  

When the model point set and the moving point set are 
in the 2D plane, the rotation matrix is in a simple form. 
The form is R= [cos�  -sin�; sin�  cos�]. The 
registration process and effects are shown in Figure 2 and 
3.  

 
Figure 3: In the first iteration of ICP, A-pair and B-pair are shown by the 
closest line.  

From the first iteration in ICP, we can get a minimum 
of energy function with rotation matrix R= [cos �1  -sin 
�1; sin �1  cos �1].   

Figure 4: Moving set moves by the angle of �1 + �1‘.    

Compared to the direction from model set to moving 
set, we invert the registration direction and get �1’. In the 
angle set S, with the ICP method, we can get: �1≥ �2≥…≥ 
�i≥… and limn⟶∞ �n=0. To increase the step angle, we add 
the angle �1 to �1’ and the step width spread to �1 + �1’. 
After that, the OA and the OB are registered in first 
iteration and the rotation matrix is R=[cos( �1 + �1’)  –
sin(�1 + �1’);sin( �1 + �1’)  cos( �1 + �1’)].  By this way, 
we get the step angle as �1 + �1’.  

By this way, we spread the step width of the iteration 
of ICP. Applied it into the other iterations, we finished the 
Bi-Direction ICP in 2D plane.  

3.2. Bi-Direction ICP in 3D Space  

Bi-Direction ICP is shown to act on 2D registration in 
section 3.1. However, it can’t be extended into 3D space 
simply, since the angle direction becomes more complex 
and the rule of angle addition in 3D space has changed 
compared to 2D plane. To solve this, we modify the bi-
Direction ICP to adapt to the change of the rule and make 
Bi-Direction ICP suitable to 3D registration as well. 

As it shows in Figure 1 and Section 2.2, the model point 
cloud and the moving point cloud can be aligned by 
rotating around a spinning axis. So, based on the spinning 
axis, we can get a rotation model illustrated in Figure 5. 
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Figure 5: A’ is the paired-point of A; B’ is the paired point of B. e is the 
spin axis.  

    In the Figure 5, we divide the rotation model into 3 parts: 
point-pairs on the spinning axis, point-pairs on the plane 
vertical to the spinning axis and the other point-pairs. The 
ones on the spinning axis are no longer discussed since they 

Figure 6: OB is the target. OA moves by rotating around different 
spinning axis and finally is paired with OB.  

only matter the translation vector. The ones on the vertical 
plane are the same as the process in 2D plane except one 
dimension has been added to the expression of the matrix 
R.  

So the third part in our essential part needs to be analysis. 
The paired points in this part are not in a same plane 
vertical to e in each iteration of ICP. In the 3D space, the 
path of ICP registration is shown in Figure 6.   

The biggest challenge for Bi-Direction ICP is hinted in 
Figure 6. The angle of bi-direction rotation matrix is no 
longer an addition of two direction angles. The integration 
of the two direction rotation matrix is more complex and 
uncertain.  
    To solve the addition problem, we brought the rotation 
matrix set M={Ri;i ℕ*} and M’={Rj;j ℕ*} on the opposite 
registration direction. Suppose the number of elements in 
M and M’ are m and n.   
Definition: if the start point is B, we get S’. We inverse the 
process by Rn, Rn-1, …, R1 in S. Then in each step, Bi links B 
with a distance. Based on the center B and BB’, we can get 
a dome in the sphere O. Consider the rotation matrix in S’, 
we can get the B’ after R1’ in S’ and BB’. If |BB’|>|BAi+1| 
and |BB’| <|BAi|, we call that R1’ covers Rn, Rn-1, …, Ri+1 in 
S.  

With the definition and Figure 7, an iteration in Bi-
Direction ICP covers many iterations in ICP. The more 
elements it covers, the less iteration times it runs with Bi-
Direction ICP. As shown in the Figure 1, the second 
iteration in Bi-Direction ICP covers the arc A’C’ rotating 
around the line OB on the sphere surface (between the two 
gold disks). Now, we successfully  

Figure 7: This figure shows the ICP (blue arrow) path of OAOB 
and the Bi-Direction ICP (red arrow) path of 

OAOCOC’…OCi..OB.  

  
Figure 8: The running time and the iteration times of Bi-

Direction ICP go with the bi-direction iteration times going up.  

reduce the times of iteration in ICP with bi-direction 
method.   
    However, the bi-direction method doesn’t guarantee a 
good convergence, which the ICP method could make. By 
this way, we combine the bi-direction method and ICP 
method together to acquire fast registration and good 
convergence.  

We applied Bi-Direction ICP into the registration of 
Buddha, which comes from the Stanford 3D Scanning 
Repository [8]. In the Figure 8, the iteration times means 
how many times there are in all in the registration and Bi-
Direction ICP time is the time that the whole process costs. 
The Bi-Direction ICP times means how many Bi-
Direction iteration times only there is in the registration. 
In this experiment, we get the minimum of running time: 
Bi-Direction ICP times is 6 and the minimum time is 
82.32s, while the running time of ICP is 221.28s. In this 
case, we manage to decrease the iteration times from 63 
of ICP to 13 with the bi-direction method. Using bi-
direction method with ICP, we reduce the running time of 
registration by skipping iterations successfully. Our 
experiment is followed in Section 4.  

4. Experiment  

In this section, we discuss a vital problem we met to solve 
the local minima of ICP. Based on the data set, we discover 
the ICP converges easily to local minima as the rotation 
angle between the two point clouds goes up. In our 
experiment, the local minima occurs when the rotation 
angle of the moving point cloud and the model point set is 
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120o~240o. So in order to solve this, we use principle 
components analysis (PCA) to match the eigenvalues of 
covariance matrix of two point clouds. Suppose the 
covariance matrixes of the model point cloud and moving 
point cloud are Cov1 and Cov2, and Cov1 = V1Λ1V1

T, Cov2 = 
V2Λ2V2

T (I=V1V1
T=V2V2

T). The Λ1 and Λ2 are diagonal 
matrix with the form [λ1 0 0;0 λ2 0;0 0 λ3] (λ1>λ2>λ3). 
With this method, we let the initial rotation matrix R=V1V2

T. 
Through this method, we manage to eliminate the mismatch 
caused by the front and back inversion.  

Dataset  Bunny Dragon  Buddha  

Origin  0.002  0.0018  0.0022  

Huber  4.20e-4  3.34e-4  3.78e-4  

Tukey  3.52e-4  3.46e-4  2.17e-4  

Cauchy  3.92e-4  3.49e-4  2.76e-4  

Welsch  3.60e-4  3.38e-4  2.20e-4  
Table 1: The registration accuracy under IRLS with the datasets in 
Stanford 3D Scanning Repository. Origin means the root of the mean 
square. The unit of the RMS is meter. 

Another problem is the lack of accuracy of the sum of 
least square. To solve this, we bring the IRLS [10] into our 
method. We apply all the IRLS weights into the point 
clouds of Stanford 3D Scanning Repository and get Table 
1.  

After solving the problems, we complete the process 
for registration. We apply the Bi-Direction ICP method 
into all the point clouds in Stanford 3D Scanning 
Repository and Mian’s datasets. The comparing 
experiment is based on ICP with all the point clouds above. 
In the end, we get the merged point clouds and Table 2. In 
Table 2, Bi-Direction ICP shows better RMS and running 
time as it is expected. 

5. Conclusions and Future Work  

We propose the Bi-Direction ICP method to accelerate 
the registration speed and analyze the Bi-Direction ICP in 
2D registration and expanded to 3D registration. In the 
experiment, we manage to reduce the running time of ICP 
by reducing the iteration times with bi-direction method. 
And as a complement, we solve the local minima of ICP 
with PCA matching, which makes the Bi-Direction ICP 
function a more robust method.  

We have reduced the iteration times of ICP, but to 
guarantee the accuracy, we seek for the help of ICP. The 
later study is expected to concentrate on the convergent 
analysis of the algorithm.  
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Dataset  
Partial overlap (ICP and Bi-Direction ICP) 

Size of point set  ICP (DT+SVD+IRLS)  Bi-Direction ICP 
|M|  |N |  Time(s)  RMS(mm)  Time(s)  Ang.Err.  RMS(mm)  

Bunny  
Dragon  
Buddha  

40256  40097  71.90  0.356  68.37  0.7642 o  0.352  

25914  25219  67.91  0.346  33.41  0.1402 o  0.346  

78056  75582  221.28  0.218  82.32  0.0353 o  0.217  

Chicken  

Parasauro 
T-rex  

29518  30165  94.12  0.3045  90.38  ---  0.3040  

46006  42940  100.27  0.2966  80.86  ---  0.2965  

38776  40214  123.04  0.2922  67.61  ---  0.2919  
Table 2: The size of point set means the number of points in a point cloud. Ang.Err. is short for angle error. ‘---’ shows hard to follow 
due to the lack of the real angle. The RMS is gained with the Tuber IRLS method. 
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