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Abstract

Over a million fatal accidents occur every year with
road vehicles. Road user detection for Advanced Driver
Assistance Systems and Autonomous Vehicles could
significantly reduce the number of accidents. Despite
the research focus on road user detection and such sys-
tems, there is a surprising lack of research in real-world
applications. In this work, radar and camera data are
combined on an autonomous shuttle called ‘WEpod’,
driving on the public road in Wageningen, The Nether-
lands. With experiments we show that our method re-
duces the candidate region margin to 0.2m and reduces
the miss rate significantly. Furthermore, our specifi-
cally trained Convolutional Neural Network improves
the performance by 1.4% over vision-based road user
detection, and combined with radars we improve by
7.6%. Finally, with our approach we show a perfor-
mance of 95.1% on the WEpod while driving on the
public road.

1 Introduction

Every year more than a million fatal traffic accidents
occur [11]. About 25% of these could be attributed to
lack of attention of the driver [18]. Therefore, road
user detection has been a focus of research for Ad-
vanced Driver Assistance Systems (ADAS). Further-
more, Autonomous Vehicles also require reliable road
user detection to safely navigate in traffic.

There are two common approaches to road user de-
tection: vision-based and fusion-based. In vision-based
systems, candidate regions are generated and subse-
quently classified. In fusion-based systems, data from
multiple sensors is combined, either one sensor gen-
erates candidate regions for classification by the other
sensor or both are simultaneously used to improve per-
formance.

Pedestrians are the most vulnerable road users, more
difficult to detect, and behave more erratic than other
road users. Hence most vision-based research focuses
on pedestrian detection [19, 2], although some litera-
ture can be found on vision-based car detection [6] and
on-road vehicle detection [15].

Despite the extensive work on vision based systems,
recent research shows that there is still significant room
for improvement. Compared to a human benchmark,
vision systems have about 100 times more false de-
tections and miss 10 times more possible detections
[19]. Fusion-based detection where one sensor gener-
ates candidate regions could reduce the number of false
detections [14, 13, 8, 9].

Although automation in vehicles is growing, there
is a surprising lack of research in on-line applications.
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Most research focusses on off-line processing of real
world data and detection of a single type of road-user.
However, for real-world applications, such as an au-
tonomous vehicle, all road-users such as pedestrians,
bicyclists, motors, cars, trucks and busses have to be
detected in real-time on the vehicle.

The goal of this paper is to show road user detec-
tion in an autonomous shuttle that drives on the pub-
lic road. Therefore, we introduce a fusion-based road
user detection approach combining radar and camera
sensors with our proposed dynamic candidate regions
method. Furthermore we train a convolutional neural
network (ConvNet) with contrastive loss for classifica-
tion. This approach is evaluated on a standard dataset
for benchmarking and we apply it in our autonomous
shuttle.

This paper is organized as follows. First, a short de-
scription is given on related work of fusion-based detec-
tion and classification using Convolutional Neural Net-
works. Section 2 gives background on our approach,
followed by the experiments in Section 3. The results
are discussed and a conclusion is given in Section 4.

1.1 Related work

Detection can generally be split in two parts; first,
detecting candidate regions of interest and second,
classifying these as relevant or irrelevant. In general,
two different sensors are used in fusion-based detec-
tion. Laser scanners / Lidars are often used for road
user detection, however, they depend on light and are
obstructed by fog and rain, making them unreliable in
many real-world situations. [13, 12, 14, 10].

Radars detect objects with lower frequency electro-
magnetic wave reflections and are not much influenced
by weather conditions. Literature has shown that
smaller objects, such as pedestrians and bicyclists, can
also be detected [17, 1] and hence using radars is a com-
mon choice in real-world applications, although they
are seldom combined with visual data [9, 8].

Since all road users are visually distinguishable, a
camera is generally well suited for classification. How-
ever, an abstraction from raw pixel data into classes
is needed, which is generally described as a vector of
probabilities for each of the classes.

ConvNets are the state-of-the-art method to classify
multi-class visual problems [4]. Multiple convolutional,
pooling and rectification layers are combined, so that
the visual input is abstracted into lower dimensional
data. This data describes the differences and unique
visual components of each class. Multiple fully con-
nected layers classify this data into probabilities for
each of the classes [4].

These ConvNets have to be trained; thus many im-
ages with known classifications are fed into the network



and a loss layer provides feedback of the performance
to the network [4]. This approach puts an emphasis on
learning a general visual description of the class. How-
ever, in road-user detection, the difference between a
relevant and non-relevant detection also needs to be
learned. A Siamese network with contrastive loss is
an approach to learn this difference [5] and has shown
better results than the traditional class-based training
[16]. Therefore, we apply this approach in our system.

2 Method

For our fusion-based road user detection method we
combine radar detections with classification of visual
data. Other work [8, 9] reported similar approaches,
however, we improved two aspects of their approach.
Firstly, the dynamic candidate regions method fuses
radar and image data more accurately. Secondly, the
contrastive loss function used in training our ConvNet
improves the precision and recall of the classification.
In the next two sections we give a detailed description
of these two aspects.

2.1 Dynamic Candidate Region

In our approach the radar detections are transformed
into the camera image as regions of interests, which are
then fed into a classifier. A dynamic projection of the
detection location to the image plane combined with
the detection distance and camera calibration allow us
to generate candidate regions of interest at real-world
scale in real-time. The method is detailed in the next
paragraphs.

Detections in the radar plane are provided by the
radar in the form of distance and angle (d,,#6,). As-
suming that all objects are standing on the ground,
they can be transformed into the vehicle coordinate
system. This is detailed in equation 1, with the sensor
location (z,,y,) and orientation («,) with respect to
the vehicle (X, Y, Zw)-

Xuw cosq, —sinq, x, d, * cos 0,
Y, | = [sin o,  COSQy y,«] . [dr * sin Gr] (1)
Zw 0 0 0 1

In contrast to the work of Milch and Behrens [9] and
Premebida and Nunes [13], we do not consider the road
to be flat. Therefore, we incorporate the roll (8) and
pitch (vy) of the vehicle, measured by the vehicle’s iner-
tia measurement unit. These values are obtained from
the gravitational direction and the angles are defined
to the horizontal coordinate system and hence they are
not Euler angles, which can be seen from the rotation
matrix in equation 2.

Xrp cos 7y 0 —siny Xw
Yip| =1 0 cos 3 sin 8 Y| (2)
Zrp siny —sinf cosf *cosvy Zw

As the detections are rotated with the vehicle’s mo-
tion, they can be transformed to the camera coordi-
nate system (X, Y., Z.). This is described in equation
3, with the camera position (z, y., z.) and orientation
(a.). These coordinates can be further projected to
image coordinates (u,v), e.g. with the OpenCV [7]
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projectPoints function, also taking lens distortion into
account.

Z. cosa, —sina, 0 —x. ‘i(,’“p
—-X.| = |sina, cosa, 0 —vy. Pl (3)
-Y. 0 0 1 —=z P

As the distance to the detection is available and Con-
vNets need a fixed sized input, every candidate region
can be created in acordance with its real-world size. To
allow pedestrians, cyclists and cars with a maximum
height of 2 m to fit, crops of 2.4 x 2.4 m are created
with a 0.2 m margin to compensate for variations. This
margin is chosen based on the results of experiment 1
(Section 3.1). However, this is not wide enough for ve-
hicles seen from the side. Fortunately, the radar also
provides a width measure of the detection so additional
crops to both sides can be created.

2.2 Classification

Convolutional Neural Networks (ConvNet) have
been highly effective in image detection and classifi-
cation and found their way to fusion-based pedestrian
detection [14]. ConvNets learn a representation of the
input images with different levels of abstraction. In
contrast to the general approach to increase the net-
work’s size and complexity to improve the classification
performance, we are bound by the available processing
capacity. All candidate regions have to be classified
within a 66 ms cycle time. In the following paragraphs,
we describe our approach.

Neural Networks learn a lower dimensional represen-
tation of the input data through various convolutional
and rectification layers. These are followed by fully
connected layers that can learn the relation between
the more abstract representation and the desired label
output. Our approach is similar to this and is shown
in Figure 1, where 64f stands for 64 filters, 6 x 6 px for
the filter size and 2s for a step of 2 px.

The real-world size of the different road-users differ,
a pedestrian is about 1 x 2 m, while a car is about
2 x 1.5 m seen from behind up to 6 x 1.5 m seen from
the side. However, all these types have to be recognized
from a 2.4 x 2.4m crop, thus unrelated information is
also present in each input. Therefore, the output is not
a single prediction for each class, but rather a grid of
8 x 8 predictions. Each grid cell represents an area of
1 x 1 m and can be used to extract the smallest area in
which a road-user might be present or not. Since fully
connected layers cannot give such an output, this layer
is replaced by a convolutional layer, which has a filter
size of 1 x 1, creating a convolutional fully connected
layer.

The general approach is to learn an abstraction to-
ward the class label with softmaz. However, two visu-
ally similar classes, such as a pedestrian and bicyclist,
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Figure 1. Our neural network architecture
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Figure 2. Class separation with t-sne

will often be classified wrongly. The underlying cause
can be explained by visualizing the output of the last
convolutional layer with t-sne. The outputs of pedes-
trians and bicyclists overlap as displayed in Figure 2.
The contrastive loss method is used to increase the sep-
aration between these classes and reduce the difference
between two similar inputs [5].

Our learning approach is to first train the network
normally to obtain basic abstraction. Next, we obtain
a set of pairs that have similar abstraction but belong
to different classes as well as pairs that belong to the
same class but have different abstractions. Except for
the convolutional fully connected layer, the network is
trained with contrastive loss.

3 Experiments

The goal of this paper is to show road user detec-
tion in a real-world application. For this we use the
autonomous shuttle WEpod which is driving on the
public road of the Wageningen University’s campus in
the Netherlands. In this paper we use the three front
camera-radar pairs of the nine pairs around the vehicle.

In the sections below we report experiments to eval-
uate our method. However, we also use the KITTI
dataset to have a comparable benchmark [3].

3.1 Experiment 1 - Dynamic Candidate Regions

The dynamic projection as described in Section 2.1,
should make the candidate regions more accurate, since
we do not assume the road to be flat. To evaluate this,
three different types of road sections on the WEpod’s
route are chosen: a straight road, a curve and a speed
bump. Three recordings of 20 seconds are taken for the
flat and curved road types, while for the speed bumps
only 2-3 seconds could be taken as bumps are short.

Table 1. Comparison of traditional static and our
proposed dynamic candidate regions method

Road Straight Curve Bumps
Static

Roll [deg] 1.64 +£0.34 | 1.00 +£0.43 | 1.68 £0.67
Pitch [px] 4.2 +1.3 2.0 £1.3 9.6 £10.6
Margin [m] | 0.30-0.75 | 0.23-0.57 | 0.65-1.62
Dynamic

Roll [deg] 0.27 £0.18 | 0.17 £0.18 | 0.12+£0.12
Pitch [px] 1.1 £0.7 0.9 +£0.7 1.3 £14
Margin [m] | 0.09-0.22 | 0.07—0.17 | 0.08-0.21
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The horizon is manually annotated in each frame.
For the static projection method, the roll and pitch
values are set to zero. The pitch accuracy is calcu-
lated from the vertical pixel distance in the center, and
the roll accuracy from the angle difference between the
annotated and projected horizon. Table 1 details the
accuracy and variation for both projection methods of
the roll and pitch in each type of road section.

Furthermore, a margin is calculated from the roll
and pitch variations, so that a detection of 2 x 2 m
would fit in the candidate region. The first value rep-
resents a 20 variation on a detection (d,,0,) at 10 m
distance and 28 deg angle, and the second at 25 m and
28 deg. From these results, a margin of 0.2 m is chosen
for the candidate regions, resulting in a crop size of
2.4 x 2.4 m.

3.2 Experiment 2 - Learning

To compare the classification performance of our
contrastive loss training with conventional learning, a
training set of images of fully visible pedestrians, bicy-
clists and cars at a maximum distance of 25 m was cre-
ated from the KITTI database. For evaluation, a slid-
ing projected window approach creates image crops at
different distances from the test images. Figure 3a de-
tails the recall and precision of the the different meth-
ods. Figure 2 shows the separation of the different
classes from the fourth convolutional layer outputs.

3.3 Experiment 3 - Radar Fusion

Fusing image classification with radar candidate re-
gions should improve the recall performance. The pos-
itive evaluation set is created as 2.4 x 2.4 m candidate
regions from the 3D position of the ground truth and
the camera calibration from the KITTI database. A
total of 9 crops is created for each true detection, by
adding random variation of max 0.3m in x and y di-
rection to simulate the radar detection inaccuracy and
the proposal accuracy. The negative evaluation set is
created from random projected candidate regions. De-
tections are considered correct if the Intersection over
Union (IoU) > 0.5. The same networks as were used in
experiment 2 are evaluated, and also per type of road
user. The results in figure 3b show that fusion-based
detection improves vision-based detection.

3.4 Experiment 4 - Real-world Application

While driving on the campus, recordings from the
front three sensor pairs were obtained. In total, 423
pedestrians, 864 bicyclists and 1329 cars were manu-
ally annotated. The radar detections were used to gen-
erate dynamic candidate regions which were classified
with our ConvNet. We distinguished between relevant
and non-relevant classification (CL-R/NR) and classi-
fication as the correct type of road user (CL-RU). Fur-
thermore, we combined the detection over three succes-
sive images and accepted the classification if two are
the same (CL-3). The results are shown in Figure 3c.

4 Conclusion

This paper shows road user detection on an au-
tonomous shuttle driving on the public road. To
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achieve this we combined radar and camera sensors
and introduced two improvements over existing fusion-
based detection methods.

With Experiment 1 we showed that the road cannot
assumed to be flat. On a flat road, the candidate region
would have an offset up to 0.75 m, missing half of most
road users. Moreover, in the case of speed bumps,
the candidate region would miss a whole car or most
of pedestrians and bicyclists, thus increasing the miss
rate. With our dynamic candidate regions method, the
offset is reduced to 0.2 m and added as a margin to
the candidate region. We reduced processing time by
having smaller and more effective candidate regions.

Our ConvNet with contrastive loss improved the per-
formance with 1.4% over the conventional approach,
as shown in experiment 2. Experiment 3 combined the
dynamic candidate regions with our ConvNet which
increased the performance with 7.6%.

The road user detection was benchmarked on an ex-
isting dataset, but in future we will present our own
dataset based on the WEpod recordings also contain-
ing more road user types. Moreover, it will contain
more data and different variations compared to other
datasets. With more data we expect the performance
gap to be closed even further.

Experiment 4 showed that we obtained a perfor-
mance of 91.9% on road user detection for our WEpod
vehicle driving on the public road. This performance
is still below the human benchmark of 99% precision
and 99.5% recall for a single image. However, by com-
bining the classification of three successive images the
performance is increased to 95.1%. Furthermore, we
are much closer to the human benchmark and hence
the WEpod can drive safely on the public road.
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