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Abstract

Alignment of 3D human body scans is a challeng-
ing problem in computer vision with various applica-
tions. While being extensively studied for the mesh-
based case, it is still involved if scans lack topology. In
this paper, we propose a practical solution to the point
cloud based registration of 3D human scans and a 3D
human template. We adopt recent advances in point set
registration with prior matches and design a fully au-
tomated registration framework. Our framework con-
sists of several steps including establishment of prior
matches, alignment of point clouds into a common ref-
erence frame, global non-rigid registration, partial non-
rigid registration, and a post-processing step. We can
handle large point clouds with significant variations in
appearance automatically and achieve high registration
accuracy which is shown experimentally. Finally, we
demonstrate a pipeline for treatment of social patholo-
gies with animatable virtual avatars as an exemplary
real-world application of the new framework.

Figure 1: An overview of the proposed framework for a point
cloud based 3D human scan-template registration with prior
matches. On the left: the input 3D scan. The goal is to align
it with a pre-defined full-body template. On the right: registra-
tion result. Middle: the scan overlayed with results of individual
steps (top row) and the sequence of the deforming template pro-
gressing through the pipeline (bottom row).

1 Introduction

Alignment of real-world 3D human scans is a chal-
lenging problem in computer vision. Our goal is to
align or register a given raw 3D scan with a 3D body
template, i.e., to recover correspondences and a dis-
placement field of a 3D human template to a reference
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3D human body scan. Accurate human body registra-
tion has various applications in statistical shape analy-
sis [1], anthropometric measurement extraction [2] and
rehabilitation, to name a few.

If a human body scan and a template are represented
by meshes, i.e., polygonal networks with normals and
defined point topology, the problem is specified as mesh
registration. This is a well-studied area with many
works covering articulated human body registrations
[3]. If both a human scan and a template are repre-
sented by point clouds, i.e., bare 3D point coordinates,
the problem remains generally unsolved, and there are
only a few attempts to tackle this problem [4]. There
is, although, a demand to register human body scans
as point clouds. For instance, 3D reconstructions ob-
tained on a multi-view system represent noisy point
clouds, with structured outliers caused by variations
in cloths and appearances. Moreover, in many real-
world scenarios meshes might not be available.

Recent advances in rigid and non-rigid point set
registration allow closing the gap mentioned above,
which is our main contribution in this paper. Ex-
tended Coherent Point Drift (ECPD) [5, 6] — a
state of the art probabilistic approach for point set
registration — allows embedding prior matches into
a registration procedure. It was shown that in cases
when prior matches are available or can be established
automatically, ECPD can handle articulated cases
more accurately compared to CPD [5]. Thus, we adopt
ECPD for point cloud based registration of human
body scans and design a multiple-stage human body
registration pipeline schematically shown in Fig. 1. To
align a scan and a template into a common reference
frame and to estimate scale, our pipeline contains a
pre-alignment step. The pre-alignment is followed by
a global non-rigid registration providing initialisation
for partial non-rigid registration. On several stages
of the registration pipeline, automatically established
prior matches guide the registration procedure. At
the same time, our method is semi-automatic, and
neither depends on large data sets (in contrast to [1])
nor requires point topology.

2 Related work

Among related works, there are several approaches
similar to ours. For an exhaustive overview of rigid
and non-rigid point set registration algorithms, an in-
terested reader may refer to [7, 5, 6]. Additionally, sev-
eral works on general point set registration can be men-
tioned which are not covered by these papers. Eckart et
al. [8] proposed a rigid point set registration method
based on decoupling of Gaussian mixture model pa-
rameters combined with a faster and more robust op-
timisation over a resulting compact representation. A
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multiply-linked Gravitational Approach [9] allows reg-
istration of noisy point clouds with improved accuracy
compared to other well parallelizable rigid point set
registration methods, e.g., variants of Iterative Clos-
est Point (ICP) [10], and more accurate but not fully
parallelizable probabilistic methods.

Alignment of point sets involving complex displace-
ment fields (with rigid and non-rigid components) con-
stitutes the class of articulated point set registration
methods. One of the early attempts was a generalisa-
tion of ICP [10] to articulated motion [11]. Especially
for the case of articulated registration of 3D human
body scans represented by point clouds, several ap-
proaches were recently proposed [12, 4]. These works
offer efficient algorithms for registrations of the same
bodies (or bodies very similar in appearance) in differ-
ent poses. In contrast, we solve the problem of regis-
tering dissimilar human scans and a pre-defined tem-
plate, with the goal of high accuracy, especially in the
head and facial areas. In our case, 3D human scans
can evince significant variation in clothes, hairstyle,
body shape, proportions of individual body parts; we
assume that poses of a scan and a template do not
differ largely.

Dey et al. [13] proposed a markerless technique to
align a human body mesh template to a new pose spec-
ified by a noisy point cloud of a human body. Similar
to our approach, the method relies on body landmarks
(head, hands and feet). However, we work with point
clouds and do not solve the problem of pose alignment.
The idea of alignment of a human body scan and a
pre-defined template is used for anthropometric mea-
surement extraction. Thus, in [14], a human scan and
a template meshes are registered so that measurements
can be consistently extracted on the template. A sim-
ilar idea leading to high accuracy is adopted in [2],
wherein a human body scan and a template are repre-
sented by point clouds. The method adopts global full
body alignment, which is less accurate than our ap-
proach (though the accuracy suffices for the purpose
of anthropometric measurement extraction). On the
contrary, we use a segmented template, apply partial
non-rigid registration for higher accuracy in regions
with high structural variation and an optional post-
processing.

3 The framework

In this section, we describe in detail the proposed
framework for registration of full 3D human body
scans.

3.1 A human body template

The proposed approach relies on a human body tem-
plate which represents a segmented point cloud in a
shape of a human body, see Fig. 2. The template was
created by a designer and contains 1.75 · 105 points.
Optionally, point topology and joints are available for
it (Fig. 2-(b)). For an enhanced precision, our pipeline
accepts prior matches — facial and body landmarks, if
available (Fig. 2-(c), -(d)).

Figure 2: A full-body human template: (a) template with the
pre-segmented body parts shown in different colours; (b) the
skeleton of the template (can be optionally provided for the reg-
istration); (c) positions of the predefined facial and body land-
marks on the template; (d) zoomed in facial landmarks in a
frontal and a side view.

3.2 Overview of the framework

Assume we are given two 3D point clouds: the tem-
plate TN×3 = (t1, . . . , tN )T and the reconstruction
RM×3 = (r1, . . . , rM )T (reference). In ECPD, prior
matches are provided by a set of indices Nc ⊂ N2 with
an uncertainty parameter α (see Sec. 3.3 for details
on establishment of prior matches). In the rigid case,
ECPD [6] outputs parameters of rigid body motion
and scaling to pre-align the template with a scan. In
the non-rigid case, ECPD [5] outputs a displacement
field aligning template and a reference as well as the
probability of correspondences P . Further algorithmic
details can be found in [5, 6].

Thus, the first step of the framework — template
pre-alignment — consists in the alignment using rigid
ECPD. Note that the joints of the template rigging
are included into the registration as additional points.
The second step — global alignment — consists in a
rough non-rigid registration using non-rigid ECPD on
the whole template (without segmentation). As can
be observed in Fig. 1, this step reasonably accounts
for overall body shape variations to obtain preliminary
correspondences between the body parts of the tem-
plate T (see Fig. 2) and the corresponding body parts
of the reconstruction R using the correspondences of
the highest probabilities, i.e., the nearest neighbours.
Furthermore, due to the coherency constraint of the
ECPD, the joints are automatically placed to the cor-
responding position w.r.t. the registered template. The
correspondences at the surface of the template are sub-
sequently used in the third step for the partial align-
ment of the corresponding parts of the scan.

The partial alignment is much more accurate, in par-
ticular for all extremal parts of the body and the hand
regions (see Sec. 3.5 for resolution of challenging cases).
Due to the coherency constraint, the registered sur-
faces are still rather smooth. In step four — the
post-processing — the proximity of the noise-free reg-
istered template and the initial reconstruction is used
to recover fine details via the projection techniques ex-
plained in Sec. 3.4.

3.3 Landmark Extraction

Suppose a reconstructed scan in an arbitrary pose
and original images of the reconstruction are given.
Since reconstructions can be noisy, it is hard to ex-
tract semantics from the scan (determine positions of
the body parts). Thus, we detect faces in the input im-
ages using a face detector. We use the approach similar
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to the one described in [5]. Once a suited image has
been identified, the Chehra [15] facial feature detector
is applied to the image. The detected feature points are
transferred onto the scan by the projection to the cor-
responding nearest vertexes, since we know the optical
relation between image and scan from the registration
necessary to compute the reconstruction. The facial
features robustly define a semantic coordinate system,
i.e., the difference vector of the eye positions is suffi-
cient to decide between left and right with respect to
the reconstruction, and the difference vector between
an eye and the mouth is sufficient to decide between
up and down direction.

Next, the visual hull of the scan is voxelized. The
scan is rendered using orthogonal projection from the
six principal directions (imposed by the semantic vec-
tors1). The voxelized version of the reconstruction is
then thinned to the medial lines using a highly opti-
mized implementation of [16]. This algorithm always
reduces the volume to one-dimensional medial struc-
tures in contrast to other methods (e.g., [17]) which
also produce two-dimensional medial structures (me-
dial surfaces). Furthermore, the algorithm is pleas-
ingly robust to noise and does not generate overly
many branches. Once the 8-connected thinning is com-
puted, the resulting voxelized representation of the me-
dial structure is transformed into a graph which is in
turn transformed into a minimum spanning tree using
Kruskals algorithm [18], see Fig. 3-(a). Since the face
position is roughly known from the landmark computa-
tion, we find a leaf node in the tree suited to represent
the head position. Starting from this leaf, the hands
and feet can be defined to be represented by those four
leaves that are maximally far apart from the head and
each other. Hence, once the head is determined, it is
sufficient to identify four of those points to obtain can-
didates for hands and feet. Since the search of the fea-
ture points is based on the tree, the actual body pose
during scanning does not change the result as long as
no topological changes of the scan occur (e.g., a hand
touches the body). Next, four additional feature points
are equiped with semantic information (i.e., hand, feet,
left and right). We separate the feet from the hands
by choosing the two landmarks with the greatest tree-
distance to the head as feet and the remaining two as
hands. Left and right is decided by considering seman-
tic vectors computed from the facial landmarks. Posi-
tional ambiguities introduced by crossing the arms are
solved by tracing back the tree towards the shoulders.
Similarly, a decision between left and right leg is made.
In the last step, the skeleton tree is pruned by recur-
sively removing all branches that do not start with one
of the five feature points resulting in a clean skeleton
(Fig. 3-(b), -(c)).

3.4 Post-proprocessing

In the post-processing step, the projection of a par-
tially refined template onto the scan is performed.
Two variants of the projection are possible: nearest-
neighbour and reverse nearest-neighbour. During the
nearest-neighbour projection, every point of the tem-
plate is projected onto the nearest point of the scan.

1”semantic vector” is a vector giving meaning to a certain direction.
The unit vector X does not have semantics but the vector ”right” has a
semantic, namely that it points to the right with respect to a reference.

Figure 3: Extraction of the body landmarks. From left to
right: (a) minimum spanning tree extracted from the scan using
the Kruskals algorithm [18]; (b): a clean skeleton obtained by
recursively removing all branches that do not start with one
of the five feature points; (c): the resulting skeleton with an
overlayed scan.

Figure 4: The figure shows a 3D scan (a), a result up to the
step 3 (in orange) overlayed with the reconstruction (in cyan) (b)
and the registration up to the step 3 (in orange) with registration
correction (in cyan) (c).

This method often leads to point clustering. During
the reverse nearest-neighbour projection, closest points
on the template, for every point of the scan, are pro-
jected to the scan. This variant allows reducing point
clustering effects and positively affects the overall reg-
istration quality. Fig. 5 illustrates differences in results
depending on the respective projection algorithm.

3.5 Handling variety in poses

An accurate registration is particularly challenging
in the hand region, due to the low point density com-
pared to the amount of detail, and possible pose dif-
ferences with the template. Moreover, missing data
and different hand/finger configurations frequently oc-
cur. One example of a challenging case due to a bent
hand can be observed in Fig. 4. In this case, non-rigid
ECPD flattens the hand (see Fig. 4-(b)) and, conse-
quently, the registration accuracy decreases.
A possible remedy is to use the hand of the rigidly
registered template and perform non-rigid registration
w.r.t. corresponding point cloud of the hand that was
previously segmented via the framework. The result
after applying the described technique can be observed
in Fig. 4-(c).

It is noteworthy that the underlying ECPD algo-
rithm is topology preserving. We exploit this prop-
erty in multiple ways, i.e., in partial registration, in
handling various topology, applying a topology trans-
fer of the template, a straightforward transfer of vertex
qualities like texture coordinates or skinning weights to
the registered point cloud as well as the co-registration
of auxiliary points (e.g., joint positions) allowing the
transfer of rigging and skinning data between models.
Furthermore, registration against the same 3D tem-
plate guarantees a 1:1 mapping between all registra-
tion results, which is advantageous for keyframe based
animations.

56



Figure 5: Accuracy evaluation of the proposed approach:
(a) head of the original scan (left), registration result with
the nearest-neighbour projection and result with the reverse
nearest-neighbour projection (right); (b) torso of the original
scan (left), registration result with the nearest-neighbour pro-
jection and result with the reverse nearest-neighbour projection
(right); (c) detailed comparison of projection algorithms by the
means of Hausdorff distance (Red>Yellow>Green>Blue scale):
nearest-neighbour (left), reverse nearest-neighbour (right). Bet-
ter viewed with zoom.

4 Experimental results

Figure 6: Point
displacements from the
initial template (cyan)
to the final one (red).

We run the proposed pipeline
on a server under operating sys-
tem Debian GNU 8.0 (code-
name Jessie), Intel Xeon E3-
1245 V2 (3.4 GHz) processor and
NVIDIA GeForce 660Ti graphics
card (GK104-300-KD-A2 GPU).

Implementation details. Our
semi-automated pipeline repre-
sents a bash script which
invokes particular executables
with automatically generated
configuration files. Once a new
scan needs to be processed, we
invoke a script providing a path
to the scan and the path to the
data directory where results will
be saved. The script manages all input data as well
as configurations and feeds them to the respective exe-
cutables. The executables accept config files which can
guide all steps of the pipeline and can be changed for
debugging, integration or performance evaluation pur-
poses. Once the script is invoked, the pipeline starts
with the rigid pre-alignment, followed by other steps
until post-processing is accomplished.
The ECPD is implemented in C++/CUDA C and fol-
lows the description of [5, 6]. In the non-rigid case, we
use the correspondence-preserving subsampling strat-
egy proposed in [5] — instead of registering a reference
with a scan directly, the template is subsampled and
registered with the scan. Thereby, all prior matches are
preserved and influence registration procedure. Fur-
ther, the original template is registered with the sub-
sampled template (the result of the previous step) and
all points of the subsampled template are taken as prior
matches. In this way, a linear speed-up is achieved.
We adopt the subsampling strategy both for the global
non-rigid and partial registrations. During the global
registration, we also subsample the scan, since no decay

in accuracy is observed, which results in even higher
speed-up. In our supplementary material, we list the
settings for particular steps of the proposed registra-
tion pipeline.

Experiments on real data. In total, we tested our
approach on over hundred real-world scans with vari-
ous appearance (clothes, hair, body metrics). Here, we
show several results on the new data as well as on the
FAUST data set [19]. The scans are obtained from a
multiview system and reconstructed with an improved
version of [20]. An exemplary scan with 4.66·105 points
is shown in Fig. 1, on the left. All scans are captured
in the pose similar to those of the human body tem-
plate. While running, the template deforms as shown
in Fig. 1, in the middle.

The result (Fig. 1, on the right) is very accurate.
The appearance of the template is visually very close
to the appearance of the original scan, despite that the
template contains 2.65 times fewer points. Of course,
not all details, especially in regions with a high total
variation can be captured by the template. Fig. 5 pro-
vides a closer look to the result. As expected, even with
the reverse nearest-neighbour projection, there are ar-
eas with a lower resolution of the structure. Fig. 6
shows point displacements from the initially rigidly
registered template to the final non-rigidly aligned re-
sult. We make several observations about the displace-
ment fields. First, there are no obvious distortions in
the face area, despite the fact that the template has
not matched the head after rigid pre-alignment. The
leg area demonstrates a symmetric point drift, even
though both parts are treated by the pipeline indepen-
dently. The runtime for the processed scan from this
experiment amounts to 2097 seconds. For other scans,
the runtime lies in the interval {400; 2500} seconds
depending on the number of points in the scans.

We also run the pipeline on several scans from the
FAUST data set [19]. This data set serves for evalua-
tion purposes of mesh registration algorithms with em-
phasis on varying poses, in inter- and intra-individual
evaluation scenarios. Since we do not solve the problem
of posing, we register several scans in similar poses to
our segmented template. Results are shown in Fig. 7.
The accuracy of results is in-line with the accuracy of
other real-world scans. However, due to different hand
poses (different from the pose of our template) and ab-
sence of prior matches, accuracy in the area of hands
is lower.

5 Application of the proposed Framework in
Treatment of Social Pathologies

The proposed pipeline can be adopted for genera-
tion of Animatable Virtual Avatars (AVA) resembling
in appearance real persons. AVA are widely used in
film industry and entertainment, augmented and vir-
tual reality applications, and find its way nowadays
into medicine and rehabilitation. Thus, our target ap-
plication is an interactive system for curing pathologies
such as schizophrenia or autism accompanied by so-
cial interaction burdens. The movement neuroscience
and cognitive science suggest that it is easier for the
respective patients to interact with subjects (real per-
sons, virtual avatars or robots) looking similar to them.
Thus, a system which allows generattion of AVAs and
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Figure 7: Results on the FAUST data set [19] shown in
triples. For every triple: original scan (left), registration of
the scan with the 10k template (middle), Hausdorff distance
(Red>Yellow>Green>Blue scale) between the scan and our re-
sult. Our solution operates on 3D points, results shown as
meshes for visualisation purposes.

changing their appearance gradually in a virtual envi-
ronment is a concept for the next-generation therapy
of this type of the social patalogies.

There are several key requirements on the target sys-
tem. First, it should produce high-accuracy 3D scans.
Second, to leverage real-time morphing (interpolation
between multiple appearances) all scans must contain
equal number of points. We experienced that the ac-
curacy of modern affordable RGB-D sensors is too low
to achieve the desired clinical effect, and opted for a
multi-view reconstruction system consisting of multi-
ple high-resolution RGB cameras. In contrast to mod-
ern RGB-D based systems which output a mesh from
an implicit representation [21], multiview systems out-
put point clouds. Thus, the subsequent design decision
— adaptation of the proposed framework — is caused,
on the one hand, by the necessity to accurately mesh
the input scan. Due to the topology preserving the
property of ECPD, the point topology of the template
can be directly transferred to the registration result.
On the other hand, the proposed pipeline gracefully
solves two other tasks in one sweep — texturing of
the AVA, co-registration of the joints for rigging (a
core feature for animatibility of an AVA) and transfer
of skinning weights. Since the original scan and the
registered template are placed into the same coordi-
nate system and are similar in appearance, the original
high-resolution texture can be applied to the registered
template. Moreover, the proposed framework is purely
point-cloud based, and we are free to augment the tem-
plate with the joints (a sparse point set).

Among over 140 generated AVA of the patients, only
every 20-th AVA generation has required manual inter-
vention (e.g., a fine adjustment of an elbow joint orien-
tation or ECPD paremeters). All in all, our template-
based solution and scanning in a pre-defined pose con-
tributed to a well-balanced trade-off between the gen-
erality of the pipeline and high-quality results.

In Fig. 8, prototypes of the multi-view system and
AVAs obtained with the proposed pipeline are shown.
The AVAs are placed in a virtual environment mim-
icking the real surgery and can be moved interactively
(e.g., by a pre-recorded motion sequence or a real-time
capture of patient’s movements). For further informa-
tion on the application of the developed framework in

medicine, please see links about the AlterEgo project
in our supplementary material.

6 Conclusion

The methodology described in this paper can han-
dle large point sets in reasonable time due to sophis-
ticated sub-sampling strategies and a heterogeneous
implementation. The proposed pipeline is robust and
semi-automatic; it neither needs frequent user inter-
vention nor parameter tuning. The pipeline can be
applied to a broad range of applications and is to our
knowledge the first method of its kind solely relying
on point clouds. Most importantly, the possible qual-
ity of results is perfectly in line with the current state
of the art competitor methods. Due to these bene-
fits it opens up new application frontiers and effort-
lessly supports existent applications (e.g., [2]). Overall,
the proposed pipeline provides a robust and automatic
registration method able to produce satisfying results
even in the case when no prior information can be pro-
vided. Adding prior information, if available, will ad-
ditionally enhance the registration quality, but will not
require any changes in the pipeline or the parameter
settings. A current limitation of the pipeline lies in the
requirement of small pose differences between the ref-
erence and template, as it is not pose-invariant. The
introduction of partial registrations remedied the sit-
uation to a large extent but did not completely solve
it. In future work, we are planning to combine the
proposed framework with accurate kinematic motion
capture [22]. Moreover, a special attention will be di-
rected to the articulated pre-alignment to make the
pipeline invariant of an initial body pose.
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