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Abstract

In the reverse engineering process one has to classify
parts of point clouds with the correct type of geometric
primitive. Features based on different geometric pro-
perties like point relations, normals, and curvature in-
formation can be used to train classifiers like Support
Vector Machines (SVM). These geometric features are
estimated in the local neighborhood of a point of the
point cloud. The multitude of different features makes
an in-depth comparison necessary.
In this work we evaluate 23 features for the classifi-
cation of geometric primitives in point clouds. Their
performance is evaluated on SVMs when used to clas-
sify geometric primitives in simulated and real laser
scanned point clouds. We also introduce a normali-
zation of point cloud density to improve classification
generalization.

1 Introduction

Reverse engineering (RE) of scanned 3d objects is
the process of recovering a CAD representation approx-
imating the acquired unstructured point data. RE con-
sists of three main steps: pre-processing, segmentation,
and fitting. Pre-processing includes e.g. subsampling
or filtering the point cloud. The segmentation step
yields patches in a point cloud that belong to the same
parametric CAD model. Approaches like [1, 2, 3] use
measures of similarity like smoothness or color to seg-
ment point clouds. These segmentation methods lack
information about the underlying parametric model.
For RE the resulting segments have to be classified as
either geometric primitives (planes, spheres, cylinders,
etc.) or free form surfaces. Depending on the classifi-
cation result, in the fitting step a suitable CAD model
is computed to approximate the point cloud patch.

In this paper we concentrate on the classification of
geometric primitives prior to the fitting process. The
considered geometric primitives are cones, planes, cy-
linders, ellipsoids, spheres, and tori.

A common approach in RE is to use a RANSAC ba-
sed approach [4, 5]. Different parametric models are
iteratively fitted and the one yielding the smallest er-
ror is assumed to be correct. RANSAC based algo-
rithms have two problems. First, iterative fitting for
each possible primitive type is expensive, if there is
no initial knowledge of the type. Second, noisy point
clouds might be approximated by the wrong primitive,
because it yields the smallest error.

A different approach is to use local differential geo-
metric properties and thresholds for classification [6].
This method requires user defined thresholds that may
vary with different scanner types. Recently, machine
learning approaches have superseded manual threshold
definition. In [7] Support Vector Machines (SVM) to-
gether with curvature features are used to detect some

types of geometric primitives. In [8] a set of feature
histograms is used and their performance for k-nearest
neighbor, k-means, and SVM classifiers are compared.
In these papers only a small set of features is used. It
is common to use all available features for classifica-
tion, even if some of them might reduce classification
performance.

In this paper we present an in-depth comparison of
different feature descriptors. To our knowledge there
exists no prior work on histogram arrangement, combi-
nation of features and evaluation of individual features
especially in the context of geometry classification. We
evaluate the performance of 19 individual features and
their combinations. Our results give an indication on
which features are meaningful for the RE process.

2 Geometric features

For the classification of the geometry of a point cloud
P = {pi} local geometric properties are used. These
so-called geometric features are based on point coor-
dinates, normal directions, and local curvature infor-
mation. Most of the geometric features we use for our
comparison, are well known in the fields of geometry
processing.

For the purpose of using a SVM for the classifica-
tion, the geometric features are computed for all pi or
a sufficiently large subset of P , see Section 2.1. These
values are arranged in normalized feature histograms
with varying numbers of bins. The concrete values for
the normalization interval I and the number of bins b
are shown in Table 1. For numerically sensitive geome-
tric features the corresponding histograms are cropped
to the [0.05, 0.95] percentile to eliminate outliers.

The first four geometric features depend only on the
location of the points in the point cloud and are adop-
ted from [9]. For the computation of these geometric
features random points from the point cloud are re-
quired. These points are mutually different, uniformly
distributed random points from P .

F.1 Point angles: Angles between two vectors spanned
by three random points.

F.2 Point distances: Euclidean distance δ between
two random points.

F.3 Centroid distances: Euclidean distance of random
points to the bounding box centroid.

F.4 Triangle areas: Square root of the triangle area of
three random points.

F.5 Cube cell count: Number of points contained in 8
equally sized cells, which result from a uniform
subdivision of the point cloud’s bounding box.
This feature is not invariant to rotation.
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F.6 K-Median points: The coordinates of the medi-
ans resulting from clustering the point cloud into
k clusters, to minimize the sum of distances of
points in the cluster to the cluster median. Thus,
the corresponding feature histogram is the conca-
tenation of three coordinate-histograms. We used
k = 32.

F.7 Tetrahedron volumes: Cubic root of the tetrahe-
dron volume V of four random points p1, . . . ,p4

V = |(p1 − p4) · ((p2 − p4)× (p3 − p4))|/6.

Geometric features that do not only depend on point
locations are normal angles and normal directions.

F.8 Normal angles: Angles between two normals at
two random points.

F.9 Normal directions: Coordinates of the normali-
zed normal at all points. Thus, the corresponding
feature histogram is the concatenation of three
coordinate-histograms.

To estimate the normal at point p in the point cloud,
the set B of p’s k-nearest neighbors is determined.
Here, we used k = 100. The principal component ana-
lysis of B yields the covariance matrix, whose eigen-
vector np corresponding to the smallest eigenvalue is
used to estimate the normal at point p.

The geometric features that depend on the curvature
are defined as follows:

F.10 Principal curvatures κ1, κ2 are computed by po-
lynomial fitting of osculating jets as in [10].

F.11 Mean curvatures: H = 1
4 (κ1 + κ2).

F.12 Gaussian curvatures: K = κ1κ2.

F.13 Curvature ratios: |κ1/κ2|.

F.14 Curvature changes: Absolute difference between
a random point’s principal curvatures and those
of its nearest neighbor and yield two concatenated
histograms.

F.15 Curvature angles: Angles between the two corre-
sponding principal curvature directions v1, v2 at
two random points.

F.16 Curvature directions: Coordinates of two norma-
lized principal curvature directions v1, v2 at all
points. Thus, the corresponding feature histogram
is the concatenation of six coordinate-histograms.

F.17 Curvature differences: Absolute differences of the
principal curvatures, the Gaussian curvature, and
the mean curvature at two random points, optio-
nally weighted by distance.

F.18 Shape index as defined in [11] for κ1 > κ2

SI =
1

2
− 1

π
arctan

κ2 + κ1
κ2 − κ1

.

In order to combine the classification capabilities of
individual geometric features, they can be combined
into more general features. In [12] a combined normal
based feature of two surflet pairs is proposed. These

surflet pairs are defined as point-normal-pairs (p1,n1)
and (p2,n2) with normalized normals n1,n2. From
two surflet pairs a local, right-handed, orthonormal
frame is computed

u = n1, v = ((p2 − p1)× u)/ |(p2 − p1)× u‖,
w = u× v.

This frame yields three geometric attributes

α = arctan(w · n2,u · n2), β = v · n2,

γ = u · (p2 − p1)/‖p2 − p1‖.

Together with the point distance δ, these attributes
define the surflet pair feature:

F.19 Surflet pairs: The tuple (α, β, γ, δ) for two
random points.

Further combined features can be constructed by
concatenation of their respective histograms. Alt-
hough any combination of the above features is possi-
ble, we combined only those features that proved most
effective as individual features.

F.20 Triple combination of the best point-, normal-,
and curvature-features: F.7, F.8, and F.15.

F.21 Simple surflet combination of F.7, F.8, and F.19.

F.22 Extended surflet combination of F.19 and F.20.

F.23 All features combination of features F.1,...,F.19.

2.1 Model selection

For the computation of training and test data we
used the method of extracting patches of point clouds
resulting from simulated scans of geometric primitives
described in [13]. We also homogenize the density of
the extracted patches. The density dp of a patch P =
{p1, . . . ,pn} is computed as

dP =
1

n

n∑
i=1

k∑
j=1

δ(pi,qj)

k
,

where qj are the k-nearest neighbors of pi and δ(pi,qj)
is the Euclidean distance. Based on dP and the target
density dt, a scaling factor s = dt/dP is computed.
Each point of P is scaled with s. We used dt = 0.01.

The set of training data consists of 9, 600 point cloud
patches of all six primitive classes with at least 150
points. 80% of these point clouds are used for training.
The remaining 20% are used for feature evaluation by
the true-positive-rate. To compute the geometric fea-
tures from the point cloud patches often random point
pairs, triplets, or quadruplets were chosen. In these
cases 217 feature values were sufficient to yield stable
feature histograms.

For the supervised learning we use SVMs. SVMs
have shown to perform very well in high dimensional
space when used with histograms [14]. For the SVM
kernel we use a Gaussian RBF Kernel. A k-fold cross
validation is used with k = 5. For optimizing the slack
variable C and kernel size γ an extensive grid search is
done. Given the d-class training data the one-versus-
all approach uses d binary SVMs. For more details on
SVM based learning methods refer to [15, 16].
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(a) Wooden toy firetruck.

(b) Point cloud of scanned
firetruck.

(c) Point cloud of firetruck colored by primitive
class.

(d) Point cloud of firetruck colored by primitive
class without homogenization.

Figure 1: A real scan of a wooden toy firetruck colored by primitive class using the simple surflet combinations
feature F.21: cones(red), planes (blue), cylinders (magenta), spheres (cyan), ellipsoids (green), tori (yellow).

3 Results

In this section we give the results of the feature eva-
luation process in terms of true-positive rates (TPR) of
individual and combined features. All results are ba-
sed on the same training data of point cloud patches
from the six primitive classes. Table 1 shows the true-
positive-rates for all features and corresponding values
for C, γ, b, I, and a flag p, if the histogram is cropped
to the [0.05, 0.95] percentile. Note, that for F.23 the
histograms are a combination of the respective feature
histograms, which are normalized and cropped indivi-
dually. Without the homogenization relative feature
performance is identical to Table 1 but true-positive
rates are about 10%− 20% higher.

Feature Histogram TPR C γ b I p

F.1 Point angles 0.564 50 2 64 [0, 1] n
F.2 Point distances 0.437 10 5 64 [0, 1] n
F.3 Centroid distances 0.370 100 0.1 64 [0, 1] n
F.4 Triangle areas 0.515 10 10 64 [0, 1] n
F.5 Cube cell count 0.420 5000 0.1 64 [0, 1] n
F.6 K-Median points 0.240 1 0.1 96 [0, 1] n
F.7 Tetrahedron vol. 0.588 1000 0.75 64 [0, 1] n
F.8 Normal angles 0.529 10 1.5 64 [0, 1] n
F.9 Normal directions 0.427 1 0.25 96 [−1, 1] n
F.10 Principal curv. 0.308 0.1 1.5 128 [0, 1] y
F.11 Mean curv. 0.280 5000 10 64 [0, 1] n
F.12 Gaussian curv. 0.250 0.01 1 64 [0, 1] n
F.13 Curv. ratio 0.286 0.1 2 64 [0, 1] n
F.14 Curv. change 0.295 0.01 0.75 128 [0, 1] n
F.15 Curv. angles 0.513 15 0.25 128 [0, 1] n
F.16 Curv. directions 0.429 5 0.1 192 [−1, 1] n
F.17 Curv. differences 0.351 0.1 5 128 [0, 1] y
F.18 Shape index 0.280 0.1 2 64 [0, 1] n
F.19 Surflet pairs 0.695 5000 0.1 128 [0, 1] n
F.20 Triple combi. 0.632 1000 0.01 256 [0, 1] n
F.21 Sim. surflet combi. 0.725 1000 0.1 256 [0, 1] n
F.22 Ext. surflet combi. 0.711 5000 0.01 384 [0, 1] n
F.23 All features combi. 0.369 10 0.01 1728 n/a n/a

Table 1: Test results as true-positive rate (TPR) for
all features of the simulated data set.

In contrast to a decrease in true-positive-rate, tests
on real scans of point clouds show that homogenization
leads to a better performance when classifying non-
synthetic data. Figure 1(c) shows exemplar real scan
data colored according to the detected primitives. Be-

fore coloring the point cloud has been segmented with
a simple smoothness based region growing. We used
an implementation of [17]. The scan has then been
colored by using feature F.21 with (Figure 1(c)) and
without (Figure 1(d)) homogenization.

4 Discussion

The results for the geometric features of Section 2
categorized as point-based, normal-based, curvature-
based, and combined features are discussed separately.
For observations on feature performance when classi-
fying individual primitives we consulted feature confu-
sion matrices, see Table 2.

The true-positive-rate of 0.588 of the tetrahedron
volumes feature scores highest among the point-based
features. While performing well for planes it confuses
ellipsoids with spheres and tori with cylinders and has
weak performance for cone classification. The reasons
for this seems to be that point-based features do not
capture curvature information sufficiently.

The normal angles feature F.8 has a classification
rate of 0.529 and the highest classification rate among
normal-based features. It is weak for classifying cones
and cylinders. F.8 favors tori so that there is a large
misclassification of cylinders as tori.

With 0.513 the curvature angle feature F.15 has the
highest classification rate of the curvature-based featu-
res. It best classifies planes and has the weakest perfor-
mance for ellipsoids, spheres and cylinders. Confusion
of these primitive types can be observed for all features
since they have strong geometrical relations especially
when examined locally with noise.

The surflet pair feature F.19 performs best for pla-
nes, cylinders, and spheres, and has better performance
for cones, ellipsoids, and tori than F.7, F.8, or F.15.
The simple surflet combination feature F.21 performs
best among all described features. It discriminates sp-
heres, ellipsoids, cylinders, and tori best.

Based the true-positive-rates and color-coded real
scans, we observe that homogenizing the density of the
synthesized data decreases classification performance
on the test set but improves classification applied on
real scans. Since point cloud density is a result of the
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F.7 Tetrahedron volumes F.8 Normal angles F.15 Curvature angles F.19 Surflet pairs F.21 Simple surflet comb.
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Cone 0.19 0.4 0.09 0.15 0.3 0.07 0.3 0.36 0.08 0.17 0.21 0.06 0.32 0.31 0.1 0.16 0.17 0.11 0.58 0.22 0.1 0.06 0.13 0.02 0.67 0.15 0.11 0.06 0.09 0.02

Plain 0.02 1 0 0 0.07 0 0.03 1 0 0.05 0.01 0 0.05 1 0 0.02 0.01 0 0.03 1 0 0 0 0 0.02 1 0 0 0 0

Cyl. 0.02 0 0.47 0.18 0.01 0.47 0.09 0.01 0.35 0.2 0.06 0.42 0.40 0.02 0.41 0.18 0.03 0.45 0.05 0 0.74 0.13 0.01 0.16 0.04 0 0.77 0.09 0 0.17

Ellips. 0.02 0.06 0.09 0.61 0.26 0.11 0.08 0.1 0.09 0.53 0.17 0.17 0.09 0.14 0.16 0.41 0.14 0.2 0.05 0 0.06 0.7 0.16 0.11 0.03 0 0.06 0.74 0.15 0.09

Sphere 0.08 0.17 0 0.12 0.71 0 0.11 0.18 0.03 0.28 0.39 0.07 0.14 0.13 0.08 0.22 0.4 0.08 0.13 0.34 0 0.2 0.65 0 0.12 0.01 0 0.13 0.74 0

Tori 0.02 0 0.22 0.07 0 0.84 0.03 0 0.11 0.01 0.08 0.91 0.04 0.01 0.17 0.06 0.04 0.82 0.01 0 0.2 0.06 0 0.82 0.01 0 0.2 0.07 0 0.8

Table 2: Normalized confusion matrices for features F.7, F.8, F.15, F.19, and F.21 in heat-map coloring.

scanning process it affects features differently for dif-
ferent 3d-Scanners. Excluding density as an influence
on feature computation by point cloud homogenization
leads to better generalization of the trained classifier.
Using the simple surflet combination feature F.21 we
show an exemplar, colored real scan of a wooden toy fi-
retruck, see Figure 1(c). The three main colors are red,
blue, and cyan which correspond to cones, planes, and
spheres, respectively. There are no tori or ellipsoids
which is correct for the chosen object. Due to the do-
minance of cones in the selected feature, segments that
might be cylindrical are classified as cones. Without
homogenizing the density the classifier favors cylinders
over cones which in some cases might be correct but
often mistakes planes for spheres or cones, see Figure
1(d).

5 Conclusion

We present the evaluation of normal-, point-, and
curvature-based features for primitive recognition in
point clouds using support vector machines. Based on
simulated scans we compare the performance of dif-
ferent features and feature combinations. Resulting
classifiers were applied to real scans with and without
homogenizing the density. Results of curvature-based
features did not meet our expectations. Our results
can be used to optimize the feature selection for the
classification task at hand.

For future work we intend to use unsupervised le-
arning methods, e.g. auto encoders, for feature engi-
neering. To generate simulated scans that match real
scans as close as possible is another aspect we plan to
investigate.
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