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Abstract

In recent years, many methods for data compression
and structure extraction from various types of massive
data using multivariate analysis have been proposed.
The locality preserving projection, which uses a sym-
metric similarity matrix, is one of these data compres-
sion methods. However, the similarity matrix express-
ing the characteristic of data may often not be symmet-
ric in real. In this study, we propose an asymmetric
locality preserving projection that expands the locality
preserving projection from a symmetric similarity ma-
trix method to one that uses an asymmetric similarity
matrix. We also show the experimental results of its
application to the k-nearest neighbor method as an ex-
ample.

1 Introduction

In recent years, a large amount of data has become
available online, collected various sensors. The extrac-
tion of data structure from large-scale databases for
mining various information and dimensional compres-
sion for reducing the data processing costs are tasks
that often must be performed. Multivariate analysis is
often used for dimensional reduction and structure ex-
traction. Many of these multivariate analysis methods
can be expressed using an extended pairwise represen-
tation [1, 2]. Similarly, as is well-known, the locality
preserving projection (LPP) is also expressed using an
extended pairwise representation. Because a covari-
ance matrix or a Gramian matrix is used as a statisti-
cal index for linking multivariates, it is assumed that
these matrices are symmetric in the extended pairwise
representation.

An LPP using a symmetric similarity matrix is often
applied to data compression. However, the similarity
matrix expressing the characteristic of data may often
not to be symmetric in real. For example, it is known
that the Smith-Waterman and BLAST scores [3] for
measuring the similarity between DNA and protein se-
quences in bioinformatics, and the tangent distant ker-
nel [4] and Simpson score [5] used in image classifica-
tion may not be symmetric.

In this research, we propose an extension of the LPP
from a method that uses a symmetric similarity matrix
to one that uses an asymmetric similarity matrix. We
can apply the proposed asymmetric LPP (ALPP) to
classification problems that have both label similarity
and data proximity. We also present some experimen-
tal results to confirm the effectiveness of our method.

2 LPP [6]

In this section, we briefly explain the LPP [6].
Let {xi} ∈ Rm be the training data and let X =
( x1 x2 · · · xn ) be a data matrix. Further, let
SLPP be a symmetric similarity matrix. Then, the LPP
is expressed as follows:

Wopt = argmin
W

⎡
⎣1

2

n∑
i,j=1

SLPP
ij ‖Wxi −Wxj‖2

⎤
⎦

=argmin
W

tr
(
WXLXTWT

)
s.t. WXDXTWT = Im,

where L = D − SLPP is called a graph Laplacian ma-
trix and Im is a m-dimensional identity matrix. In
addition, W expresses a linear mapping that embeds
training data xi into the subspace.
Various similarity matrices can be considered; how-

ever, typical similarity matrices are as follows:

SLPP
ij =

{
exp

(
−‖xi − xj‖2

/
γ
)

‖xi − xj‖2 < ε

0 otherwise
,

or

SLPP
ij =

{
1 xi ∈ Nε(xj) ∪ xj ∈ Nε(xi)
0 otherwise

,

where ε is a constant that determines the neighborhood
and Nε represents the neighborhood. The above opti-
mization problem results in the following generalized
eigenvalue problem:

XLXTWT = λXDXTWT .

The optimized solutionW is obtained by arranging the
eigenvectors in ascending order of the magnitude of the
eigenvalues of the generalized eigenvalue problem.

3 Representation of Asymmetric Similarity

As mentioned above, the LPP assumes that a sim-
ilarity matrix is a symmetric matrix, but this is not
always the case in the real world. As shown in Fig. 1,
this often occurs when a data point xj is not in its
own neighborhood Nk(xi) in the k-nearest neighbor
method. In order to apply an asymmetric matrix to
a symmetric matrix method, a symmetric matrix se-
ries expansion of the asymmetric matrix can be used
to approximate an asymmetric matrix. In this paper,
we utilize the method using the Hermitian matrix pro-
posed by Chino et al. [7].
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Figure 1. Asymmetric proximity of a three-
nearest neighbor method

3.1 Hermitian Representation of Asymmetry [7]

Let S be a real asymmetric (so-called general) sim-
ilarity matrix. Matrix S can be separated into real
symmetric matrix Ssymmand real alternative matrix
Sskewas follows:

S = Ssymm + Sskew,

Ssymm =

(
sij + sji

2

)
, Sskew =

(
sij − sji

2

)
.

Here, we define the Hermitian matrix H as follows:

H = Ssymm + iSskew (i2 = −1).

Real symmetric matrix Ssymm is used for the real part
of H , and real alternative matrix Sskew is used for the
imaginary part of H . Because H is an Hermitian ma-
trix, it can be decomposed using a unitary matrix U
and a real diagonal matrix Λ as follows:

H = UΛU∗,

where U∗ is the Hermitian conjugate matrix. MatrixH
is complex, but the eigenvalue matrix is a real matrix.
Letting U = Ur + iUc, we obtain

H = (UrΛU
T
r + UcΛU

T
c ) + i(UcΛU

T
r − UrΛU

T
c ).

Because the imaginary part Uc is derived from the
asymmetric component, the metric obtained from the
symmetric component is corrected by the asymmetric
component Uc.
If H is a positive (negative) definite matrix, con-

cretely, if all the eigenvalues of the eigenvalue matrix
Λ are the same sign, the norm and inner product can
be defined by the following equation:

‖x‖H =
√
(x,Hx) =

√
xTUΛU∗x =

√
(Λ

1
2U∗x,Λ

1
2U∗x).

This equation is no different from the metric calcu-
lation used in machine learning, i.e., it is possible to
construct a Hilbert space with H as the measure.

3.2 Extension of the Hermitian Representation
of Asymmetry

As mentioned above, the Chino’s method [7] equally
adds symmetric components and asymmetric compo-
nents to the Hermitian matrix. In order to control
the effect of asymmetric components on its norm more
freely, we propose the following representation to ex-
press asymmetric similarity:

H = (1−α)Ssymm+αiSskew (i2 = −1, 0 � α � 1).

In this formulation, it is possible to adjust the effect
of asymmetric components, such that only asymmet-
ric components are considered when α = 1, and only
symmetric components are considered when α = 0.

4 ALPP

Using H defined in the previous section, we can sim-
ply rewrite the objective function of the LPP as follows:

Wopt = argmin
W

⎡
⎣1

2

n∑
i,j=1

Hij‖Wxi −Wxj‖2
⎤
⎦ .

Here, as H is a complex matrix, this optimization is
a minimization with complex numbers. At a glance,
this objective function itself has no meaning because
the complex numbers cannot be totally ordered1. Note
that when this objective function is concretely calcu-
lated, we obtain

1

2

n∑
i,j=1

Hij‖Wxi −Wxj‖2

=
1

2

n∑
i,j=1

Hij{(Wxi,Wxi)−2(Wxi,Wxj)+(Wxj ,Wxj)}

=
1

2

n∑
i=1

(Wxi,Wxi)

n∑
j=1

Hij −
n∑

i=1

n∑
j=1

Hij (Wxi,Wxj)

+
1

2

n∑
j=1

(Wxj ,Wxj)

n∑
i=1

Hij

=
1

2

n∑
i=1

(Wxi,Wxi)

n∑
j=1

(Hij +Hji)

−
n∑

i=1

n∑
j=1

Hij (Wxi,Wxj).

Because Ssymm
ij = Ssymm

ji , Sskew
ij = −Sskew

ji , if we set
D as follows:

D = diag

⎛
⎝ n∑

j=1

(Hij +Hji)

⎞
⎠ ,

Dii =
n∑

j=1

(Hij +Hji)

=
n∑

j=1

SSymm
ij + iSSkew

ij + SSymm
ji + iSskew

ji

= 2

n∑
j=1

SSymm
ij = 2D′

ii,

⎛
⎝D′

ii =

n∑
j=1

SSymm
ij

⎞
⎠ ,

we can rewrite the objective function as follows:

1

2

n∑
i,j=1

Hij‖Wxi −Wxj‖2

=
1

2

n∑
i=1

Dii (Wxi,Wxi)−
n∑

i=1

n∑
j=1

Hij (Wxi,Wxj)

= tr
(
WXD′XTWT

)− tr
(
WXHXTWT

)
= tr

(
WXLXTWT

)
(L = D′ −H),

1This objective function has meaning if we take the abso-
lute value of the term on the right side, but discussion will be
necessary about the validity of the function used in applications.
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where the graph Laplacian matrix L is a complex ma-
trix with imaginary parts Sskew. In order to avoid a
trivial solution W = 0, we introduce the same con-
straint as used in the LPP as follows:

WXD′XTWT = Im.

In short, the optimization problem of the LPP with an
asymmetric similarity matrix is formulated as follows:

Wopt=argmin
W

tr
(
WXLXTWT

)
s.t. WXD′XTWT=Im.

Because L is a Hermitian matrix and its eigenvalues
are real numbers, the trace of the objective function
also becomes a real number. This optimization prob-
lem, therefore, becomes meaningful. Using the method
of Lagrangian multipliers, we define the objective func-
tion J(W ) as follows:

J(W ) = WXLXTWT − λ
(
WXD′XTWT − Im

)
.

Then, partial differentiation is performed with WT , we
obtain the following equation:

∂

∂WT
J(W ) = XLXTWT − λXD′XTWT = 0.

∴ XLXTWT = λXD′XTWT .

Solution W can be obtained by solving the generalized
eigenvalue problem for complex matrices and arranging
the eigenvectors in ascending order of the magnitude
of the eigenvalues. Although D′ is a real matrix, be-
cause L is a Hermitian matrix, the eigenvalues are real
numbers, but the eigenvectors are complex vectors, so
W is the projection of the complex subspace.

5 Experimental Results

As an application example of the ALPP, we imple-
mented the k-nearest neighbor method and compared
it with the other dimensional reduction methods. As
comparative methods, we implemented principle com-
ponent analysis (PCA) and the LPP.

5.1 Data Set

In this experiment, we used the USPS handwritten
digit database2 [8]. We used 7,291 images as the train-
ing data of a binary classification problem, of which we
used 1,005 images of “1” as positive examples and we
used 6,268 images of other digits as negative examples.
We determined that the number of dimensions of the
projected subspace was two using visual observation.
For the classification, we used the k-nearest neighbor
method in the projected subspace, and we conducted
the experiment with k=3. We used 254 images as posi-
tive examples, 1,753 images as negative examples, and,
in total, we used 2,007 images for the evaluation.
We used the following equation for the similarity ma-

trix of the LPP so that classification became feasible:

SLPP
ij =

{
1 l(xi) = l(xj)
0 otherwise

,

2Available from https://www.csie.ntu.edu.tw/
∼cjlin/libsvmtools/datasets/

Table 1. Classification results of PCA
positive negative

true 251 13
false 3 1740

1st Component

2n
d 
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Figure 2. Projected subspace of PCA

where l(.) is a class label. Data with the same class
label is assigned 1, and 0 is given to data with other
class labels. This similarity matrix is symmetric.
The similarity matrix of the ALPP adds the follow-

ing neighborhood similarity to the symmetric similar-
ity matrix of the LPP:

Sasym
ij =

{
1 xi ∈ Nk(xj)
0 otherwise.

As a result, the similarity matrix of the ALPP becomes
asymmetric. In short, this similarity matrix has both
the similarity of the identity of the learning labels and
the similarity of the data proximity. In this experi-
ment, we used α = 1/2.

5.2 Results and Discussion

The PCA classification result is shown in Table 1,
and the result of dimensional reduction is shown in
Fig. 2. In PCA, the subspace is not divided into the
positive and negative examples, and both data are
grouped together. The classification result, however,
is good.
The classification result of LPP is shown in Table 2,

and the result of dimensional reduction is shown in
Fig. 3. In LPP, the subspace separates the positive and
negative examples because the similarity matrix is de-
signed to gather nearby examples using the class label
identities. The data, however, crosses at the boundary
between the positive and negative examples, and the
recognition rate of LPP is below that of PCA.
Table 3 shows the recognition rate when the sub-

space projected by ALPP is two dimensional space.
The performance of ALPP is slightly improved in com-
parison to LPP. Because the subspace projected by
ALPP is a complex subspace, the number of dimen-
sions of the subspace is four. Figs. 4 (a) and (b) show
graphs in which the horizontal axis is the first com-
ponent and the vertical axis is the second component
for the real and imaginary parts, respectively, of its
components. As shown in Fig. 4 (a), the test data are
separated into two classes in the real part, and the data
is concentrated at the origin in the imaginary part, as
shown in Fig. 4 (b). This means that there is almost

Table 2. Classification results of LPP
positive negative

true 248 16
false 9 1734
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Figure 3. Projected subspace LPP

Table 3. Classification result of ALPP (two-
dimensional complex space)

positive negative
true 248 16
false 6 1737

no component of the imaginary part of the projected
data.
Just as for LPP, the data crosses at the boundary

between positive and negative examples, and the recog-
nition rate of ALPP is below that of PCA. Most data
is on the real axis and the projected subspace is like
one-dimensional space. This is because the similarity
matrix itself is an asymmetric matrix but it is nearly
a symmetric matrix. Because the size of the similarity
matrix is 7, 291 × 7, 291, there are approximately 20
million symmetric pairs of elements. The number of
asymmetric components in this experiment was 8,132
pairs, which was about 0.3% of the total. In order
to evaluate the performance of ALPP, it seems neces-
sary to conduct experiments using data with stronger
asymmetry.
Finally, we show the examples that are correctly

classified by the ALPP method but incorrectly classi-
fied by the LPP method in Fig. 5. The leftmost column
shows the test image and other columns show the near-
est training images. The upper row shows the train-
ing images selected by the LPP method and the lower
row shows the training images selected by the ALPP
method. As shown in this figure, the ALPP method
gathers more similar images of positive examples than
the LPP method.

6 Conclusion

We have proposed an ALPP that expands the LPP
from a symmetric similarity matrix to an asymmet-
ric similarity matrix using the Hermitian matrix for
asymmetric representation. When we simply replace
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(a) real part (b) imaginary part

Figure 4. Projected subspace of ALPP (two-
dimensional complex space)

test 1st NN 2nd NN 3rd NN method

LPP
P N P N N

ALPP
P N P P

Figure 5. Classification example

the optimization problem with one using the Hermi-
tian matrix, the optimization problem becomes com-
plex, which cannot be totally ordered and sometimes
does not make sense. We have, however, shown that
it could be calculated well by devising a method to do
so.
Although it is necessary to examine the meaning

of the distance between two points on the complex
subspace obtained by the ALPP, our method can be
applied in many ways because there is an enormous
amount of data with asymmetric similarly in the real
world. In this paper, we have not compared and ex-
amined a wide variety of data. We will evaluate the
performance of our method by increasing the variety
of experimental data in future. We will also consider
whether it can be applied to other methods that use
the pairwise expression, e.g., sparse learning, or metric
learning.
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