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Abstract

With assumptions that people usually do not change
their clothes during an observation period, people ap-
pearance data are easily outdated in re-identification
applications. This raises the over-fitting problem be-
cause only a few training data are available for learn-
ing statistical models. In this paper, we propose a two-
stage transfer metric learning approach for multiple-
shot people re-identification to tackle this small train-
ing data problem. In the first stage, we transfer the
generic knowledge from a large existing dataset, and
in the second stage, we transfer the learned distance
metric for each probe-specific person using the side-
information. FExperimental results on several public
benchmark datasets show that our proposed approach
s superior over conventional approaches.

1 Instructions

People re-identification is to recognize the people
from different camera views. It is an important task
to understand people behavior across camera network
for surveillance purpose. However because of the low
camera resolutions and the long distance to the cam-
era, people biological information (e.g., face or gait)
is generally unavailable. Therefore the existing re-
searches in this filed mainly focus on people appear-
ance with an acceptable assumption that people will
not change their clothing during the observation pe-
riod. This leads to another unpleasant situation that
people appearance data are easily outdated and there
is only a few training data available. The high level
statistical models learned on the limited data usually
suffer from over-fitting and will eventually affect the
re-identification performance.

Although it has not been widely addressed, there
are several interesting works trying to tackle this is-
sue by using the transfer learning methods for re-
identification propose. In Wu et al.’s work [10], they
sample several images as a “third party” from another
dataset. On the basis of the “third party”, they uti-
lize the sparse coding method to express the probe
and gallery images as a collaborative representation.
They aim to discover an intermediate feature repre-
sentation that bridges the gap between the query and
the gallery sets. Zheng et al. [14] formulate the re-
identification as a set-based verification problem under
a transfer learning framework. The useful relationships
between non-target data (unlabeled people) and tar-
get data (labeled people) are introduced as additional
constrains for learning process, which results in a more
robust model than the one learned on target data only.
Zhang et al. [13] propose an adaptive metric learning
method, which transfer the information from both the
source and target set. By utilizing the generic and tar-
get metrics, the adaptive metric learning method can
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not only acquire the overall knowledge about the re-
identification, but also be closely associated with the
target task. The concept of transfer learning is also ap-
plied in single-shot re-identification scenario. For ex-
ample, Li et al. [6] learn a generic distance metric on
the entire target training set. According to the similar-
ities of probe person, they select and re-weight samples
as the training data. The learned generic metric is then
transferred to a candidate-set-specific distance metric.

Despite the great efforts on this topic, it still leaves
much room to further improve. Inspired by Zhang
et al.’s work [12], we propose a two-stage transfer
metric learning approach to tackle the small training
data problem for multiple-shot people re-identification.
The proposed approach consists of two transfer dis-
tance metric learning stage. In the first stage, we
perform the adaptive metric learning. The adaptive
metric learning can leverage the generic knowledge
from existing datasets (source set) to integrate with
specific information of target task (target set). The
generic knowledge, encoded in generic distance met-
ric, is able to furnish the missing information for tar-
get task, while specific task information, encoded in
target distance metric, will lead the generic knowl-
edge to avoid the sub-optimal solution. On the ba-
sis of adaptive metric learning, we carry out a sec-
ond stage transfer metric learning for each probe per-
son during the online re-identification. Given a probe
person, the side-information, i.e., the image data of
other person captured in the same camera view, is
available. We intend to transfer the adaptive distance
metric toward probe-specific person by utilizing such
side-information. Since such side-information will cer-
tainly differ from probe person, we are able to impose
more constraints into the metric learning. On the other
hand, the image data in probe and gallery set are cap-
tured in different camera views, emphasizing much on
the side-information (only contains probe image data)
will result in over-fitting. Therefore, we regularize the
probe-specific distance metric with the adaptive metric
to improve the metric quality. Integrated with adap-
tive metric and more reliable constraints, the second
stage metric learning is able to increase the ability of
probe-specific metric to distinguish the probe person
from others.

The organization of this paper is as follow. Section
2 first briefly introduces the adaptive metric learning
method for the first stage metric learning. Section 3
then proposes the second stage transfer metric learning
method for the probe-specific distance metric. The
experimental results are discussed in Section 4, and
conclusion are presented in Section 5.

2 The First Metric Learning Stage
In the first transfer metric learning stage, we employ

adaptive metric learning [12] to transfer the informa-
tion from source set to the target set. The adaptive



metric learning is able to leverage the knowledge from
existing datasets to assist target task learning, which
is perfectly consistent with our need. In this section,
we briefly introduce the adaptive metric learning.

Given two appearance instances, x; and x;, the Ma-
halanobis distance can be expressed as dy(x;, x;) =
(xi—x)T M(x;—x;), where M € R is the distance met-
ric, a symmetric and definite matrix that completely
parameterizes the distance function. Let Dy and D, de-
note the source and target dataset, and let My and M,
denote the generic and target distance metric learned
on Dy and D, respectively. The adaptive metric learn-
ing tries to integrate the two metrics together for the
desired adaptive distance metric M,. The objective
function is defined as:

Sm, = LM, Dy) + yiR(My, M) + y2R(M;, Myy). (1)
In Eq. (1), L term is the loss function on the target
task, while the two R terms are regularization, which
are divergence functions for measuring the nearness be-
tween generic and target distance metrics.

The basic idea of defining loss term L is to keep
similar appearance instances close and keep dissimi-
lar appearance instances far apart. In a spirit similar
to that of local distance comparison [11], L term is
defined to punish the invasion in the local neighbors
from the invaders with different person identity. The
regularization R terms in Eq. (1) encode My and M,
into the M;. In order to preserve the local structure,
the von Neumann divergence is utilized in Bregman
divergence. Therefore M, is learned by minimizing the
objective function Eq. (1) with constraints as:

min " dy,(xi, x;) + C (1= &)
ijoi i ik
+ yitr(MlogM, — M,logM; — M; + M)
+ yotr(MlogM; — M, logM, — M, + M),
s.t. dy, (xi, xi) — dy (xi, x7) 2 1 = Lo,
Lijk = 0,M; =0,

)

In Eq. (2), j ~ i indicates that j is i’s local neighbor,
C is a predefined positive constant. & is the indicator
function that if x; and x; have the same person iden-
tity, &x = 1; otherwise, & = 0. Since M, is positive
definite, Eq. (2) is convex and can be efficiently solved
by the semi-definite programming. In particular, the
M, is initialized with M, to preserve the structure in-
formation of the generic knowledge. By taking steps of
gradient descent, M, moves toward M, until it reaches
convergence. M, can achieve a equilibrium point be-
tween M, and My, and make Eq. (1) minimal. The
adaptive metric M,, with capability of generic knowl-
edge and specific information of the target task, is able
to overcome over-fitting problem and have the better
performance on the target re-identification task.

3 The Second Metric Learning Stage

In order to further improve the quality of the dis-
tance metric, we attend to transfer the adaptive dis-
tance metric for each probe person. During the on-
line re-identification, we carry out a second stage met-
ric learning to learn a probe-specific distance metric
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M,. Similar as the works in [6, 7], we utilize the side-
information as the training data for the metric learning
propose. The side-information refers to the remaining
image data in the probe and gallery side. Particularly,
we only employ the data from the probe side in this
paper, i.e., the image data in the gallery side are not
involved during the learning process.

Without loss of the generality, consider the probe
person P is captured in camera view A with N in-
stances, i.e., P = {x1,x2,...,xy}. And all the left per-
sons captured in this same camera view comprise R set,
where R = {y1,y2,...,yu} and M indicates the instance
number. The objective function of the the second stage
transfer learning is defined as:

fu, = LMy, D) + nR(M,, M;). 3)
Similar as adaptive metric learning, Eq. (3) also con-
sists of loss and regularization. A trade-off parameter
n is introduced to balance the two terms.

To be consistent with the local distance compari-
son framework, we focus on instances’ local neighbors.
Given an instance x; of P, we can find out a closet
neighbor x{ in P. If there is an instance y; from R and
dy(xi,y;) < du(x;, x7), y; cause a loss to local neighbors
of the specific probe person P. The objective of the
second stage transfer metric learning is to punish such
loss. The invasion loss is supposed to be smaller in the
induced feature space after metric learning. The sec-
ond stage transfer learning is expected to punish such
loss. To strengthen the punishment on the invasion
and to improve the discriminate ability of M,, we add
a margin as additional penalties on the local neighbors.
Therefore, the loss term is defined as:

LMy, D)) = 3" 11+ diy, (x5, ) = dg, (53, )l
iJ

“)

In Eq. (6), [‘]+ is a standard hing loss function, and
[a]; = max(a,0). The minimizing Eq. (4) will result
in that in the local neighbors, the instances with the
same person identity stay close, while the those with
different identifies are far apart. In order to avoid the
over-fitting on probe data, we add regularization to
associate M, with M,. The regularization term R is
essentially divergence function measuring the distance
between two metrics. In the second transfer metric
learning stage, we choose Bregman divergence for R
term. Since the second stage metric learning will be
performed during the online re-identification, it is close
related to the online metric learning methods. Dif-
ferent from the regularization defined in Eq. (2), we
choose LogDet divergence [5] for Bregman matrix di-
vergence as most online metric learning methods [4, 8].
The regularization divergence R is then defined as:

R(My, My) = tr(M; M) = log det(M,M,") —d, ~ (5)

where, d is the dimension of the distance metric.

On the basis of above discussion, the second stage
transfer metric learning can be formulated as following
optimization problem:

min Z Gij+ n{tr(M,Mgl) —log det(M,M;l) —d}
ij
s.t. dy,(xi,y)) —du,(xi, x7) 2 1= i,
4> 0,M, > 0.

(6)



Algorithm 1 The second stage transfer metric learn-
ing
Input:
probe set: P = {xy, x2,...,xn}
side-information: R = {y;,y2,...,yu}
adaptive metric: M,, target metric: M,
parameters: 7, stop criterion: &
Output:
probe-specific distance metric: M,
initialize M} « M,;
initialize [ « 1;
repeat
Yx; € P, search x{ using Mg)
compute L(M(pl), D;) term as in Eq. (4)
compute R(Mg), M,) term as in Eq. (5)
solve Eq. (6) for Mg”) using the SDP solver
l—1+1
until M) - M|, < &

With the positive semi-definite constraints of M,, Eq.
(6) is convex. It can be solved by using SDP for a
global solution. During the optimization, we use the
new M, update the nearest neighbor x{ for every x; at
each iteration. Particularly, we initialize the M, with
the target distance metric M. Begin at a good starting
point, the optimization procedure convergences fast.
During experiments, we observed training a probe-
specific metric with 500 instances takes less than 40
seconds. The whole procedure is summarized in Algo-
rithm 1.

4 Experimental Results

We evaluate the proposed approach on the three
public datasets: ETHZ [2], CAVIAR4REID [1] and
Person Re-ID 2011 [3]. These datasets are con-
sidered as benchamarking for evaluating people re-
identification approaches. The varying illumination,
heavy occlusion, and different camera resolutions make
them very challenging. Some selected images are
shown in Fig. 1. For each dataset, images of half
size of the people are used as the training set; the re-
maining people are used as the testing set. M images
of each person are selected to generate the probe set,
while different M images are selected to generate the
gallery set. In order perform the adaptive metric learn-
ing, we employ an experiment setting similar to [12],
i.e., when one dataset is evaluated as the target set,
the left two dataset are utilized as the source set.

In the experiment, we compute a mixture of his-
togram features with dense color, SIFT, and HOG,
LBP. These features are normalized to zero mean and
unit variance, and then concatenated to form a single
feature vector. A principal component analysis (PCA)
is performed to preserve 90% energy. The LMNN [9]
algorithm is performed on source set and target set for
learning generic metric M and target metric M,. The
two stages distance transfer metric learning are ini-
tialized with the two types of metrics. We perform the
local distance comparison [11] for re-identification pur-
pose. We use the cumulative matching characteristic
(CMC) curve to show the re-identification matching
rates. The area under curve (AUC) and proportion
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Figure 1. Selected images from the three datasets.

From the left to right is ETHZ, CAVIAR4REID,
and Person Re-ID dataset.

of uncertain removed (PUR) scores are also utilized
to indicate the overall performance. In the following
experiment, we empirically set y; = 0.6, y» = 0.4 for
adaptive metric, and set n = 0.5 for the second stage
metric learning. We repeat the experiment 20 times
and determine the average re-identification rate.

In the experiments, we evaluate the re-identification
performance with the target metric (Target), generic
metric (Generic), and adaptive metric (Adaptive). We
compare the performances with that of the popu-
lar transfer learning method, transfer metric learning
(TML) and multi-task large margin nearest neighbor
(mtLMNN), to demonstrate the effectiveness of the
proposed approach. We also compare our approach
with the state-of-the-art methods: mutual subspace
method (MSM), sparse approximated nearest points
(SANP), and symmetry-driven accumulation of local
features (SDALF). The CMC curves are plotted in Fig.
2. The normalized AUC and PUR scores are summa-
rized in Table 1.

As shown in Fig. 2, the performance of our approach
outperforms that of target, generic, and adaptive dis-
tance metric on all the three datasets. Although the
adaptive metric underperform the target metric on the
Person Re-ID dataset due to the poor generic metric,
our approach still achieve 2% gains over that of the tar-
get metric. On the basis of the adaptive distance met-
ric, the proposed approach performs the second stage
transfer metric learning for each probe-specific person.
On one hand, it can integrate the generic knowledge
of re-identification and the specific information of tar-
get task into adaptive metric. On the other hand, it
further transfers the adaptive metric for each probe-
specific person. Comparing with the popular trans-
fer distance metric learning methods mtLMNN and
TML, our approach achieves significant improvements.
The two-stage transfer metric learning obtains 20%
and 10% superior of AUC over TML and mtLMNN.
Different from TML, our proposed approach focuses
on optimization in local neighbors instead of search-
ing global solution. It is therefore consistent with the
local distance comparison framework for multiple-shot
re-identification purpose. Comparing with mtLMNN|,
the proposed approach transfer the information from
source set to target set, and then towards probe-
specific person. By contrast, the mtLMNN attempts to
balance the performance on all the source sets. Benefit-
ing from above considerations, our proposed approach
consequently outperforms TML and mtLMNN. Com-
paring with state-of-the-art methods: MSM, SANP,
and SDALF, the CMC results in Fig. 2 and normalized
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Figure 2. The CMC curves of different methods on the ETHZ, CAVIAR4REID and Person Re-1D datasets.

Table 1. Normalized AUC and PUR scores (%) on the three datasets using different methods.

Methods | Our | Target | Generic [ Adaptive | TML | mtLMNN | MSM | SANP | SDALF
ETHZ AUC | 97.66 | 85.11 94.04 94.63 76.85 87.67 85.60 | 92.09 90.40
PUR | 16.11 13.66 15.39 15.51 12.05 14.13 13.71 15.00 14.66

CAVIAR AUC | 84.04 | 80.66 76.68 81.28 68.93 78.72 78.69 | 80.01 77.05
PUR | 37.56 | 35.82 33.81 36.12 29.75 34.79 34.68 | 35.39 34.04

Re-ID AUC | 85.26 | 83.50 51.75 82.19 62.46 72.36 77.60 | 79.00 77.45
PUR | 82.76 | 80.73 46.33 79.27 57.58 68.48 73.84 | 75.45 73.66

AUC and PUR in Table 1 show the advantages of our
proposed approach. The proposed approach not only
shows the better re-identification performance (CMC
results) but also is able to be generic across different
rank accuracy (normalized AUC and PUR). Since all
the methods in the experiments utilize the same feature
representation, we can confirm that the proposed ap-
proach is able to perform people re-identification well
in different and difficult real-world scenarios.

5 Conclusion and Future Work

In this paper, we present a two-stage transfer met-
ric learning method against small training data prob-
lem for multiple-shot people re-identification. The pro-
posed approach consists of two stage transfer metric
learning. In the first stage, we employ the adaptive
metric learning to transfer the generic knowledge from
source set to assist the learning task in the target set.
In the second stage, we transfer the adaptive metric
learning towards probe-specific metric for each probe
person by utilizing the side-information. The exper-
iments on the public datasets confirm the superior
to the conventional approaches. In the further work,
we intend to accelerate the optimization of the sec-
ond stage transfer metric learning for the real-world
re-identification applications.
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