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Abstract

Recent research has demonstrated that computer vi-
sion algorithms have understood individual face image
fairly well. However, one major challenge in computer
vision is to go beyond that and to investigate the bi-
or tri- relationship among multiple visual entities, an-
swering such questions as whether a child in a photo
belongs to given parents. Indeed parents-child relation-
ship plays a core role in a family and understanding
such kind of kin relationship would have fundamental
impact on the behavior of an artificial intelligent a-
gent working in a human being world. In this work, we
tackle the problem of tri-subjects kinship verification by
effectively exploiting the dependence structure between
child and parents in a few aspects: similarity measure,
feature selection and classifier design. State-of-the-art
results are reported with the proposed method on our
newly released kinship database characterized by over
1,000 parents-child groups.

1 Introduction

Kinship verification from facial images is an emerg-
ing problem in computer vision. Applications of kin
relationships include increasing face recognition rates
[1] [2], social media analysis [3], and so on.
Besides its wide applications, kinship learning is also

motivated by the long-term goal of computer vision to
go beyond the understanding of a single visual entity
and to that of the bi- or tri- relationship among multi-
ple visual entities, answering such questions as whether
a child in a photo belongs to given parents. Actually,
recent research has demonstrated that computer vi-
sion algorithms have understood individual face image
fairly well - the best result on the challenging LFW
verification database has reached an accuracy as high
as 99.15% [4]. However, extending those techniques to
handle the complex relationship among multiple enti-
ties is not trivial. One major reason is due to the fact
the appearance gap encountered for example in a kin-
ship problem is much larger than that in a conventional
face recognition setting. In this case, one may be given
two face images with different sex and different ages.
In this sense, kinship learning is a step towards such

a trend to capture mutual information among differ-
ent visual entities, particularly multiple face images.
Most of current research on this [5][6][7][8][9][10], how-
ever, focus on the kinship involving only two subjects
such as father-son or mother-daughter, while in prac-
tice, kin relationship involving more subjects are de-
sirable. Motivated by this, Fang et. al. [11] collected
the Family101 kinship dataset for more general family

membership classification beyond father and son.

Inspired by Fang et al’s work [11], in this paper we
focus on tri-subjects kinship verification(i.e., parents-
son or parents-daughter). This is at a lower level to
the whole-family relationship, as parents-child is the
core and basic unit formed in a family.

We propose a new discriminative bilinear classifier
to model the similarity between the parents and the
child, with the dependence between them captured by
a covariance-like matrix learnt from the data. The key
idea of our method is based on the observation that
compared to the case with only one image from one of
the parents, images from both parents could provide
richer information about the kinship relation regards
to a child, since there exists genetic overlapping be-
tween both parents and the child. Furthermore, we
propose a vote-based feature selection method, which
jointly selects the most discriminative features for the
parents-child pair, while taking local spatial informa-
tion into account. Finally, we release a new tri-subjects
kinship database, characterized by over 1,000 parents-
child groups. State-of-the-art results are achieved us-
ing our method. Interestingly, our experimental results
also show that the accuracy of bi-kinship verification
could be benefit from reformulating it as a specific case
of tri-kinship problem.

2 Related Work

Several attempts have been made to develop ma-
chine learning approaches to kinship verification.

Various feature descriptors are extracted for deter-
mining kinship similarity, including the skin and lo-
cal/holistic texture [5], DAISY [12], GGOP [3], SSR
[13], attributes [7], gated autoencoders[14] and dense
stereo matching[2]. [9] propose to describe facial ap-
pearance over smile expression.

LU et al. [8] introduce NRML by learning a distance
metric under which the samples with a kinship relation
are pulled close and those without a kinship relation
are pushed away.

While most the above works focus on the bi-subjects
kinship verification, Fang et al. [11] extend this to
more general family membership classification, i.e.,
given a query face image, asking which family it be-
longs to. This work is closely related to ours but we
focus on the verification of more basic unit that forms
a family, that is, the parents-child relationship. The
methods developed here can be potentially extended
to handle the entire family by treating a family tree as
an ensemble of tri-relationships.
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3 Tri-Subjects Kinship Verification

Assume that we are given a set ofN training samples

{(xf
i , x

m
i , xc

i , yi)}Ni=1, where x
f
i , x

m
i , xc

i ∈ Rd respective-
ly denotes the i-th sample of a father, a mother and
a child, d is the dimension of the feature representa-
tion of a sample, and yi ∈ {+1,−1} indicates whether
this child is produced by the corresponding two par-
ents. Our goal is to learn a function f : (xf , xm, xc) →
{+1,−1} to verify whether such a kinship is validated
for three previously never seen images (xf , xm, xc).

3.1 Discriminative bilinear method for tri-
subjects verification

The verification function f(xf , xm, xc) is modeled as
a three-layered network-like architecture. Particularly,
middle-level feature descriptors from each image serve
as the input layer of the network. The second layer is
composed of two groups of nodes roughly correspond-

ing to the “covariance” between xf
i and xc

j and that of
xm
i and xc

j , respectively. Finally, these covariance fac-
tors are linearly combined in the third layer to make
the prediction after a sigmoid transformation.
Note that the nodes of the second layer encode the

similarity between parents and a child. For this, we
explore two ways. The first, we decompose the triples
of (xf , xm, xc) into two pairs (xf , xc) and (xm, xc), and
hence the pairwise similarity between them is,

sf (xf , xc) = (xf )TWfx
c

sm(xm, xc) = (xm)TWmxc
(1)

where the transformation matrix Wf ,Wm essentially
encode the “covariance” relationship between a parent
and a child. Since both Wf ,Wm are d× d matrix, we
call this Symmetric Bilinear Model (SBM) inspired by
the definition of mahalanobis distance.
Alternatively, one can treat the parents and the

child as samples from two domains. Let us de-
note the parents domain as P, with data points

(xf
1 , x

m
1 ), (xf

2 , x
m
2 ), ..., (xf

N , xm
N ), and the child domain

as C, with data points xc
1, x

c
2, ..., x

c
N . With these nota-

tions, one can model the similarity between a child xc

and his/her parents xp = (xf , xm) as,

sp(xp, xc) = (xp)TWpx
c (2)

where Wp is a 2d × d matrix. This model is called
Asymmetric Bilinear Model (ABM) in what follows.
To this end, our tri-subjects kinship verifier can be

modeled as follows. Particularly, for the SBM similar-
ity measure, we have,

f(xf , xm, xc) = sign(β1s
f (xf , xc)+β2s

m(xm, xc)+b) (3)

where the combination coefficients β1 and β2 are two
scalars and b is the similarity threshold term. All these
parameters are learnt using a linear SVM.
For the ABM similarity measure, our verifier is de-

fined as follows,

f(xf , xm, xc) = σ(sp(xp, xc) + b) (4)

where σ is the sigmoid function.

The parameters {Wp, b} are learnt using the follow-
ing regularized logistic regression objective,

min
Wp,b

N∑

i=1

log(1 + exp(−yi((x
p
i )

TWpx
c
i ) + b)) + λ‖Wp‖∗ (5)

where b is the threshold, and ‖Wp‖∗ is the trace norm.
With appropriate parameter λ, the trace norm shall
force a solution with many singular value of Wp being
exactly zero. This allows a more compact representa-
tion of the data, thus being useful especially when the
original feature space is high-dimensional. See [15] for
details on an efficient implementation of this.

3.2 Vote-based feature selection

Particularly, our algorithm has two steps. In the first
step, we partition an image into overlapping patch-
es, extract a middle-level feature descriptor from each
patch, and utilize a ∈ R2d to represent the parent-child
concatenated feature vector, then obtain a weight vec-
tor u using a sparse l1 regularized logistic regression
objective [16]. We use up and uc to denote the first
half and the second half of u respectively.
Then, we obtain the patches votes for parent through

vpk =
∑

j∈k u
p
j , where up

j denotes the j-th element of
vector up corresponding to patch k. After this, we
select the first K patches with high vpk value for feature
representation. Similarly, we obtain the firstK patches
with high vck value for child feature. Note that, we use
the union of selected patches from parent and child to
represent each face.

3.3 Variants of our proposed method

The variants of our method include with/without
feature selection and working at the block level i.e.,
selecting the most discriminative patches first, then
learning the “covariance” relationship and making veri-
fication predictions based on each selected patches, and
finally aggregating these meta-decisions through linear
SVM for the final verification judgement.

4 The TSKinFace Database and Evaluation
Protocol

We have constructed a new kinship database named
TSKinFace (Tri-Subjects Kinship Face Database) con-
taining 1015 families, with 513 Father-Mother-Son
families and 502 Father-Mother-Daughter families, in-
cluding 2589 individuals. All images in the database
are harvested from the internet based on knowledge of
public figures family and photo sharing social network.
During images collecting, we impose no restriction in
terms of pose, lighting, expression, background, race
etc. And the database includes around 66% Asians
and 34% non-Asians to guarantee a diverse race distri-
bution.This database will be made publicly available
online1.
The key difference between our database and other

existing kinship database lies in our inclusion of fam-
ily. Note that the Family101 database also has fami-
ly structure, but does not focus on the core parents-
child kin relationship. Another difference is that while

1Available at:
http://parnec.nuaa.edu.cn/xtan/data/TSKinFace.html
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the number of images per family in Family101 is much
larger than ours, the number of families contained in
our database is about five times more than that of
the Family101 database. Hence the two databases are
complimentary to each other. Fig. 1 shows some im-
age groups of parents-child pair from our TSKinFace
database.

Figure 1. Some family image groups of our TSKinFace
database, where each group consists of a family triple of a fa-
ther, a mother and a child. The first row shows three Father-
Mother-Daughter (FM-D) relation families, respectively and
the second row are three Father-Mother-Son (FM-S) relation
families, accordingly.

All images are cropped and scaled to a size of 64×64
grayscale pixels. In our experiments, each face image
was divided into 7×7 overlapping patches and the size
of each patch is 16×16. For each patch, we extracted a
128-dimensional SIFT feature which is adopted as our
default feature descriptor for all experiments.
We design a verification protocol following [6] and

[8]: the database is equally divided into five folds,
which facilitates five-fold cross validation experiments.
For face images in each fold, we consider all groups of
face images with kinship relation as positive samples,
while the negative samples are a random combination
with a child image and two parents images subject-
ed to the constraint that the child was not produced
by them. In our experiments, each couple and child
images appeared only once in the negative samples.

5 Experiments

5.1 Tri-subjects kinship verification

To tune the parameters of our method, we applied
cross validation strategy to seek the optimal param-
eter. As a result, λ (E.q. 5), λ for block level and
trade-off parameter for feature selection is set to be
5.0 , 0.1 and 0.08 respectively.
We compare our method to the following baselines:
Our first baseline is SVM. For this, we concatenate

the feature vectors of the group and tune the parame-
ters to reach the best possible performance.
Our second baselines include two classical metric

learning algorithms i.e., ITML [17] and LMNN [18] and
existing state-of-the-art bi-subjects kinship verification
model ( NRML [8] and gated autoencoder [14]) as the
base models to score the similarity between a child and
his/her parents separately, and then train a linear SVM
over these to make the final prediction (c.f., E.q. 4).
Third, we follow [11] to treat images belonging to

the same family as a group and to build a linear SVM-
based kinship verifier by constructing a reconstruction
errors-based representation for each face using sparse
group lasso [11].
Table 1 summarizes our experimental results. One

can see from the table that our proposed “SBM-block
w FS” performs best. Particularly, when adopting the
state of the art bi-subjects kinship verification for tri-
subjects verification, the best performer is the Gated
autoencoder [14].

Our method also significantly works better than the
sparse group lasso based method proposed by [11] -
one possible explanation for this is that for a core fam-
ily group involved only three subjects, the assumption
made in [11] that an image of a child could be best
reconstructed by the images from his/her own parents
may be too strong.
Thirdly, we see that simply adopting state of the art

metric learning methods or learning a binary classifier
through concatenating the tri-subjects feature vector
for tri-subjects kinship verification is not enough as
well, partly due to the fact that they fail to model the
dependence structure among the three visual entities.

Table 1. Correct verification rates(%) for different methods
on the TSKinFace database.

Method FM-S FM-D avg.

Concatenated+SVM 53.5±0.2381 53.2±0.2037 53.4
Sparse Group Lasso[11] 71.6±0.9644 69.8±0.3485 70.7

NRML [8] 77.0±0.5831 71.4±0.5933 74.2
Gated autoencoder [14] 81.9 ±0.4433 79.6±0.3685 80.8

ITML [17] 76.6±0.3753 71.4±0.4087 74.0
LMNN [18] 75.4±0.7293 70.3±0.7372 72.9

ABM w/o FS (proposed) 78.5±0.3411 73.2±0.3888 75.9
ABM w FS (proposed) 78.6±0.3114 76.9±0.2927 77.8

ABM-block w FS (proposed) 83.4±0.2508 81.9±0.3025 82.7

SBM w/o FS (proposed) 82.4±0.3568 78.2±0.4105 80.3
SBM w FS (proposed) 82.8±0.2608 79.5±0.2550 81.2

SBM-block w FS (proposed) 85.2±0.3031 83.5±0.2985 84.4

5.2 Effectiveness of the vote-based feature selec-
tion

We compare our feature selection scheme with lasso
and group lasso (GL). Table 2 gives the results. The
mean performance of “GL” is better than L1, reveal-
ing that learning patches works better. Furthermore,
the proposed feature selection method can reach a bet-
ter performance than “GL”, on average improving the
performance by about 2.3% and 0.4%, respectively on
both tasks.

Table 2. Correct verification rates(%) for different feature
selection methods on the TSKinFace database (where “FS”
denotes our vote based feature selection method while “L1”
denotes lasso and “GL” denotes group lasso)

Method FM-S FM-D avg.

ABM w L1 75.9±0.5100 74.8±0.5716 75.4
ABM w GL 76.0±0.4300 75.0±0.5523 75.5

ABM w FS (proposed) 78.6±0.3114 76.9±0.2927 77.8

SBM w L1 78.3±0.4980 79.2 ± 0.5629 78.8
SBM w GL 80.6±0.4972 80.9±0.5356 80.8

SBM w FS (proposed) 82.8±0.2608 79.5±0.2550 81.2

5.3 Enhancing bi-subjects kinship verification

(a)                                   (b)

Figure 2. It is difficult to determine the MD relation in
(a), if the observations are limited to the pairs only. Intu-
itively, the ambiguity may decreases when the face of father
is considered simultaneously as shown in (b), treating (a) as
tri-subjects kinship verification and verifying the FM-D rela-
tion. Note that, for (b), since once a FM-D relationship is
established, a MD and a FD relationship must be established
as well.

Intuitively, having more information about one’s
parents is potentially useful to improve the perfor-
mance of bi-subjects kinship verification, as shown in
Fig. 2. Another series of experiments are conducted
to verify this hypothesis. Table 3 compares the re-
sults of these two approaches for bi-subjects kinship
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Table 3. Correct rates (%) of different methods for bi-subjects kinship verification with triple inputs(column 2 and 5) and pair inputs
(column 3, 4, 6 and 7. “*” denotes that the result (P-values) of t−test for the performance comparison between pair inputs and triple
inputs verification is less than 0.05).

Method FM-S FS MS FM-D FD MD

Sparse Group Lasso[11] 71.6±0.9644 69.1±0.6093 68.7±1.2204 69.8±0.3485 66.8±0.4627(*) 67.9±0.5977
NRML [8] 77.0±0.5831 74.8±0.7279(*) 72.2±0.3360(*) 71.4±0.5933 70.0±0.6716(*) 71.3±0.5853

Gated autoencoder [14] 81.9±0.4433 79.9±0.6790(*) 78.5±0.5963(*) 79.6±0.3686 74.2±0.3170(*) 76.3±0.2296(*)

ITML [17] 76.6±0.3753 75.6±0.3866(*) 72.1±0.3330(*) 71.4±0.4087 70.5±0.4000(*) 70.7±0.4435(*)
LMNN [18] 75.4±0.7293 72.7±0.7305 71.5±0.7455(*) 70.3±0.7372 69.8±0.7243(*) 70.1±0.3846

ABM-block w FS (proposed) 83.4±0.2508 83.0±0.5558 82.8±0.5037 81.9±0.3025 80.5±0.4301 81.1±0.4003
SBM-block w FS (proposed) 85.2±0.3031 83.0±0.5558(*) 82.8±0.5037(*) 83.5±0.2985 80.5±0.4301(*) 81.1±0.4003(*)

verification. One can see that treating this as a tri-
subjects kinship verification problem hence potential-
ly exploiting more information about one’s parents is
indeed beneficial. t-test analysis shows that this im-
provement is statistically significant. It is well known
that a problem like MS or FD verification is quite d-
ifficult due to the different genders of two subjects to
be verified. Our method essentially provides a new so-
lution to this, and we consider it as one of the major
motivations to study the tri-subjects kinship verifica-
tion problem.

6 Conclusions

In this work, we made the first attempt to investigate
the tri-subjects kinship verification problem. For this
we proposed a novel symmetric bilinear model (SBM)
and a vote-based feature selection method, both incor-
porate prior knowledge about the dependence struc-
ture between a child and his/her two parents. Vari-
ous experiments on our newly collected database “T-
SKinFace” characterized by over 1,000 groups of triples
demonstrate the effectiveness of our proposed method.
Our experimental results also reveals that the proposed
method could be used to significantly boost the perfor-
mance of bi-subjects kinship verification.
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