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Abstract

In this paper, we propose a prediction model for
breathing pattern based on observations from CBCT
raw projection images. From the raw CBCT projec-
tions the diaphragm apex position is measured, which
in turn is used for the state estimation. We use
a novel state space model followed by an Unscented
Kalman Filter (UKF). Our method is compared with
one of the successful models called Local Circular Mo-
tion (LCM).The initial results show that, our model
outperforms the LCM model in terms of prediction ac-
curacy.

1 Introduction

Adaptive radiotherapy is a challenging topic in Ex-
ternal Beam Radiation Therapy (EBRT) wherein the
beam is controlled based on the target motion in order
to achieve precise delivery. Irrespective of the meth-
ods used for target observations there is an inherent
latency in the beam control as they involve mechani-
cal movement, processing delays and so on. Hence pre-
dicting the target movement at the time of ‘beam on
target’ is essential to increase the control precision. We
consider the problem of predicting the lung movement
based on image based observations. Several methods
have been evolved in prediction of respiratory motion
[2, 3]. They can be broadly classified into model based
and model free methods. Model-based approaches use a
mathematical model for the breathing motion based on
its biomechanical principles whereas the model-free ap-
proaches rely on heuristic learning. There are various
model based approaches in the literature such as linear
prediction [4], Finite State Machines [5], sinusoidal [6],
state space with Kalman filter and its variants [1].
Ruan et al. [7] used a local regression method to pre-

dict the breathing motion, where the breathing state is
modeled to be an augmentation of current observation
and a set of lagged (past) observations. Hong et al. [8]
have developed a model wherein respiratory motion is
an one-dimensional projection of a curvilinear motion
in a plane augmented with an independent auxiliary
axis rather than the delayed axis. They model the local
motion along a curvilinear trajectory to be a circular
motion (called Local Circular Motion (LCM)). They
have used Extended Kalman Filter (EKF) for state es-
timation, and have tested the prediction performance
with observations generated at a rate of 10 Hz.

Herewith we consider an usecase of predicting
the breathing pattern based on observing the di-
aphragm apex from Cone Beam Computed Tomog-
raphy (CBCT) raw acquisition. Figure 1 shows the
diaphragm projection on a raw CBCT image. Apart
from applications in adaptive radiotherapy, the pre-
dictions are used for motion compensation in CBCT
reconstruction to reduce movement artifacts (blur and
streaks) [9]. However, the challenge in observing raw
CBCT images is that, the frame acquisition rate is less
than the sampling rate of other typical external sen-
sors. Typically the sampling rate in case of CBCT is
lesser than 10 Hz. For example, Siemens Oncor sys-
tem acquires 200 frames in about 50 seconds (sample
rate of 4 Hz). In such case, the LCM based model
does not give the prediction performance as observed
in [8]. Herewith, we propose a simple extension of a
sine model to represent the breathing motion. With
this model we use an Unscented Kalman Filter and
show that our prediction algorithm outperforms the
LCM model and EKF combination.

Figure 1. CBCT raw image

2 Materials and methods

2.1 Stochastic filters

The problem of stochastic filtering is to estimate
the optimal state xk of a dynamic system at time
k given the observations zk up to time k, the state
and measurement models and the initial density p (x0)
of the state. A dynamic system in state space form
with additive noise is represented by the two equations:
xk = fk−1(xk−1, k − 1) + qk−1; zk = hk(xk, k) + rk,
where fk, hk are the system and measurement func-
tions respectively. qk and rk are the process noise
and observation noise. Kalman filter is an example of
an optimal state estimator in the mean squared sense
when the system and measurement models (f and h)
are linear and when q and r are additive Gaussian.
The recursive filter equations are given by

x̂−
k = E

[
fk−1(x̂k−1, k − 1) + qk−1

]
(1)
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ẑ−k = E
[
hk−1(x̂

−
k , k) + rk

]
(2)

x̂k = x̂−
k +Kk

[
zk − ẑ−k

]
(3)

where x̂−
k and ẑ−k are the optimal predicted state

and the optimal predicted observation respectively at
time k. Kk is known as Kalman gain given by Kk =
Pxkvk

P−1
vkvk

where vk = zk − ẑ−k . P represents the
covariance matrix of the random vectors (given in the
subscript).
Extended Kalman Filters (EKF), Particle Filters

(PF) are used in applications wherein f and h are non-
linear, or q and r are non-Gaussian. EKF has the
following approximations: state distribution assumed
to be Gaussian; expectation operators are dropped in
(1),(2); Taylor series expansions are used for f and
h. Although EKFs are successful in many applica-
tions, these approximations increase the computational
effort[10],[1], and give suboptimal performance in some
cases [11]. PF implements the recursive steps using (se-
quential) Monte Carlo methods. The posterior pdf of
the state is represented by a set of samples called par-
ticles. However, computing the particle weights (based
on the likelihood function) is a challenge as there are
many spurious artifacts in the CBCT gradient image,
even after the preprocessing step (refer Fig. 3b).

2.1.1 Unscented Kalman Filter

In case of Unscented Kalman Filter (UKF), the state
distribution is assumed to be Gaussian; it is repre-
sented using a minimal set of sample points, called
sigma points. The sigma points capture the true mean
and the covariance of the Gaussian variables. How-
ever, they are propagated through the true non-linear
system f and h (unlike the EKF, wherein they are ap-
proximated to be linear).
The Unscented Transform (UT) is a method to com-

pute the statistics (mean and covariance) of a random
vector x transformed through a non-linear function
y = g(x). Based on the dimension L of x, 2L + 1
sigma points Xi are selected that are representative of
the distribution of x. Xi are selected in and around the
mean x̄, based on the covariance Px of x. The sigma
points are associated with weighting factors Wmi and
Wci for mean and covariance respectively. Refer [11]
for detailed expressions of Xi and weights Wmi and
Wci. The mean ȳ and covariance Py are approximately
given by

ȳ ≈
2L∑
i=0

Wmig(Xi) (4)

Py ≈
2L∑
i=0

Wci [g(Xi)− ȳ] [g(Xi)− ȳ]
T

(5)

The filter estimates xk recursively using (3) and uses
UT approach to propagate xk through nonlinear func-
tions f and h [11].

2.2 Non-linear models

We now review two models that are used to estimate
quasi-periodic signals.

2.2.1 LCM model

The LCM model is based on the assumption that, a
planar curve can be approximated by a circular arc
locally. Here the breathing pattern is modeled as
the 1D-projection of the path of a point object that
moves in circles, in an augmented coordinate system.
The state vector for LCM model has four components
{x, ẋ, ẏ, ω}. x is the projection of the path along x-
axis. The speed (ẋ and ẏ) and angular velocity (ω)
of the object evolve over time, based on observation.
The state equations are, ẍ = −ωẏ, ÿ = ωẋ, ω̇ = 0. In
discretized form, the state vector for the LCM model

is xk = [xk, ẋk, ẏk, ωk]
T
. We refer to [8] for the de-

tails of deriving discrete state equations, noise models
and present only the final equations herewith. The
discretized state equation in matrix form is

xk =

⎛⎜⎜⎝
1 sin(ωkT )

ωk
− 1−cos(ωkT )

ωk
0

0 cos(ωkT ) − sin(ωkT ) 0
0 sin(ωkT ) cos(ωkT ) 0
0 0 0 1

⎞⎟⎟⎠xk−1+qk−1

where T is the sampling step size (based on sampling
rate). The discretized process noise qk−1 is assumed
to be N(0,Q). It adds randomness to ẋk, ẏk, ωk. The
respective spectral densities are q1, q2, q3. The obser-
vation model is given by h(xk, k) = xk + rk, where
rk ∼ N(0, σr). That is, the model ‘observes’ the first
component of the state vector, which is a sine func-
tion. The configurable parameters of this model are
{q1, q2, q3, σr}.

2.2.2 Sine model

In sine model, the state vector has three components
{θ, ω, a} corresponding to a sine wave. The amplitude
a and the angular velocity ω vary randomly to model
the quasi-periodicity; dθ

dt = ω, where θ is the phase.
We refer to [10] for the details of deriving state equa-
tions, noise models and present only the final equations
herewith. In discretized form, the state vector for the

sine model is xk = [θk, ωk, ak]
T
. The discretized state

equation in matrix form is given by,

xk =

(
1 T 0
0 1 0
0 0 1

)
xk−1 + qk−1

The discretized process noise qk−1 is assumed to
be N(0,Q). It adds randomness to ωk and ak. The
respective spectral densities are q1, q2. The observa-
tion equation is: h(xk, k) = ak sin(θk) + rk, where
rk ∼ N(0, σr). That is, the model ‘observes’ the sine
wave from the state components ak and θk. The con-
figurable parameters of this model are {q1, q2, σr}.

2.3 Our model

Our model called as ‘offset-sine model’ is a variant
of the sine model given above. The components of the
state vector and the state equation are identical to that
of the sine model, however, with different interpreta-
tions. The observation equation includes two biases
with respect to the state components ak and θk. They
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are estimated separately prior to the state estimator
(refer Fig. 2).
This model is driven by the fact that, the breath-

ing signal has a base pattern from which its amplitude
and frequency drift randomly. Estimating these pa-
rameters in the first stage limits the process noise to
an extent corresponding to the parameter deviations.
The observation equation is:

h(xk, k) = a0 + ak sin(ω0k + θk) + rk.

The component ak models the amplitude of the non-
zero frequency component from the base level; θk and
ωk model the differential phase and the frequency in
the pattern from the base frequency. The amplitude
bias a0 can be estimated from the initial measurement.
The base frequency ω0 can be estimated as follows:

(i) From the observed set of samples find the time
corresponding to the positive peak (based on the
instance of sign change in the time derivative).

(ii) From the consecutive times of positive peaks de-
termine the wave duration.

(iii) Based on multiple wave durations found earlier
compute ω0 = 2π/T0, where T0 is the average
duration.

We note that the deviations in the predicted state
vector x̂−

k (from x̂−
k−1)for a given change in ẑ−k from

ẑ−k−1 is much lesser in our model compared to that of
LCM.

Figure 2. Schematic block of estimator

2.3.1 UKF based prediction

We use UKF for motion prediction and estimation
of the state. The state vector xk represents the verti-
cal position of the diaphragm apex. The observation h
gives the vertical position of the diaphragm apex. The
state vector has 3 dimensions, hence the UKF uses 7
sigma points. The UKF steps are similar to that of
Kalman Filter. The mean and covariance computa-
tions in the prediction and the estimation steps are
achieved through the Unscented Transform given in
Sec.2.1.1. With h being non-linear, UKF is naturally
a better alternative to EKF, as it propagates the mean
and covariance with higher accuracy than EKF.

2.3.2 Measurement of Diaphragm apex position

We use a Hough Transform based approach to mea-
sure the position of the diaphragm apex on the CBCT
images. The diaphragm shape was modeled as a pair of
piecewise smooth asymmetric parabolic sections with a
common apex point (px, py). Hence the Hough space is
a 4D-space with parameters (px, py, fl, fr), where fl, fr

are the focal length parameters of the left and right
parabolic sections respectively. Figure 3a shows curves
(asymmetric parabolas) corresponding to few points in
the Hough space. The raw CBCT image was prepro-
cessed with an anisotropic filter followed by Sobel op-
erator to obtain the gradient image. The Hough space
is computed using the gradient image, and the point
having maximum vote is identified as the diaphragm
boundary. Figure 3b shows the gradient image and
the detected shape (as a black overlay) through Hough
transform. The vertical coordinate py of the detected
apex position at k was used as zk.

Figure 3. (a) asymmetric parabolic shapes (b) di-
aphragm detection

3 Experiments and results

We have developed a prototype of our algorithm on
a dual Pentium machine, with 2.4 GHz, 2GB RAM, as
hardware. We have implemented the offset-sine model
with UKF using MATLAB. We used the code base,
libraries from [10] for implementing the filters. The
reference model (LCM with 1st order EKF) was im-
plemented and configured as in [8].
We used 15 CBCT images acquired from multiple

patients, using Siemens Oncor LINAC system. Each
CBCT image consists of 200 frames (orbital projec-
tions) acquired over the gantry movement from 270 de-
gree to 110 degree clockwise. The specifications of the
imager are: the acquisition rate is 4 Hz (200 frames/50
sec), the Source to Imager Distance (SID) is 145 cm;
pixel resolution is 0.27× 0.27 sq.mm.
Hong et al [8] have used breathing patterns gener-

ated from real position management system (RPM) as
measured data zk. Their prediction accuracies were re-
ported based on comparisons against zk. We measured
zk using Hough transform approach as described in
Sec 2.3.2. The ground truth ζk of the diaphragm apex
position was marked on the raw images by an experi-
enced radiotherapy doctor. The prediction accuracy is
computed with respect to ζk.

For offset-sine model, the configurable parameters
were q1 = 0.2, q2 = 5, σr = 1.5. a0 was initialized with
the first observation of z. We took an average angular
frequency for a given trace (breathing pattern) and
initialized ω0 for that dataset.
Figure 4 illustrates the predictions using our ap-

proach and compares the same with that of the refer-
ence model. It can be seen that both the models show
similar performance while the waveforms have similar
amplitude (peak-to-peak levels). However, when there
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Table 1. Comparison of the nRMSEs between the
models

Dataset LCM+EKF our model
1 0.4082 0.3412
2 0.2130 0.1926
3 0.6765 0.3636
4 1.2544 0.3097
5 0.3100 0.2560
6 0.3214 0.2830
7 1.2536 0.3202
8 0.5210 0.3283
9 1.1765 0.3312
10 0.5948 0.3254
11 0.3945 0.3829
12 0.2184 0.2085
13 0.2480 0.2211
14 0.2979 0.2482
15 0.7961 0.3009

is a change in amplitude, our model has less overshoot
compared to the reference model.

Figure 4. Comparison of prediction performance
between LCM+EKF (top) and Offset-sine+UKF
model (bottom)

The quality of prediction is measured through nor-
malized root mean squared error (nRMSE).

nRMSE =

√
1

|N |
∑
k∈N

(ẑ−k − ζk)2/σz

where the numerator is the RMS value of the predic-
tion error over a duration N . The RMS value of the
observation is denoted by σz. nRMSE indicates the
prediction accuracy at k based on the observation at
k−1, for all the observations. Table 1 shows the values
of nRMSE computed for our solution and the reference
model for all the 15 dataset. It is observed that in all
the dataset, nRMSE was lesser in case of offset-sine
model+UKF than that of the reference model. For
three traces, the reference model has lost the track,
which could be possibly due to low sampling frequency
(4Hz). Another observation is that, when there are

changes in the pattern (either in the peak-to-peak lev-
els or in the waveform duration) our model performs
better than the reference model. We need to perform
extensive validation to characterize this in detail.

4 Summary

This paper has proposed a new model for predicting
the breathing pattern from the observations of CBCT
images. Our model uses UKF, which is a better alter-
native to EKF for state estimation of non-linear dy-
namic systems. Initial studies with clinical dataset in-
dicates that, our approach outperforms the LCM +
EKF model, and can operate at a data rate of 4Hz
applicable for CBCT acquisition. We need to perform
extensive validation to arrive at the optimal configura-
tion parameters of our model. We will take up this as
our future work.
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