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Abstract

We present an appearance-based linear regression
method for pose estimation from a single image of an
asteroid, which can have any pose in the full space
of three degree-of-freedom rotation parameters. The
method is characterized by its division of the parameter
space into multiple regions. Given a large number of
training images with known pose parameters, we learn
the relationship between the images and the pose pa-
rameters, separately for each parameter region, using
the standard linear pose estimation. We also create a
common subspace such that, when projected to it, the
difference between images in the same parameter region
tends to collapse. In estimating the pose of an input
image, we project it onto the common subspace to de-
termine the parameter region. We apply the method
for pose estimation from asteroid images and report
the experimental results.

1 Introduction

Estimating the pose of three-dimensional objects
from a single image has many practical applications
and thus has been the focus of many research work.
Our objective and motivation for this work is to deter-
mine the pose of an asteroid from a single image taken
by the planned Hayabusa 2 space probe [1], after it has
obtained enough images of the asteroid from a distance
to construct a 3D model.
There have been two main approaches to the prob-

lem of object pose estimation. In one approach, there
are model-based methods [2] that extract structural
properties of the object from the image and compare
them with a known 3D model of the same object to
estimate the pose. For our purpose, we found that as-
teroids lack convenient structural properties, unlike ar-
tificial objects. Another approach is appearance-based,
where the image itself is treated as a vector and a large
number of training images of the object with known
pose parameters are compared with it [3, 4, 5, 6, 7, 8].
More directly, a regression map that gives the pose pa-
rameters when applied to an image can be obtained
from the training images. Images of asteroids are es-
pecially suited for the appearance-based approaches,
since the background is the blackness of space..
If the regression map is global, in the sense that there

is a single map covering the whole of the space of pos-
sible pose parameters, the map tends to be highly non-

Figure 1. Top row: Input images of aster-
oid Itokawa taken by the Hayabusa (MUSES-C)
space probe [9]. Bottom row: Rendering of the
3D model using the estimated pose from the in-
put image above in the same column.

linear, requiring more complex methods such as sup-
port vector regression [3]. Conversely, when the regres-
sion map is linear, it becomes impossible to globally
map the images to pose parameters as the manifold of
images with all possible poses embedded in the space of
possible images becomes more complex. To overcome
this limitation, there are locally linear embedded re-
gression methods that takes training images near the
input image to create the regression map on the fly
[7, 8].

Contribution. However, to our knowledge there has
been no method using appearance-based linear regres-
sion that is capable of estimating pose in the full space
of three degree-of-freedom rotation parameters. In this
paper, we overcome this limit by a simpler approach
than support vector regression or locally linear em-
bedded regression: dividing the parameter space into
fixed multiple regions and creating a separate regres-
sion matrix for each region. By allowing the regression
matrices to differ for different parameter regions, we
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Figure 2. PCA is performed on the set of training images with pose parameters in each subregion of the
parameter space. The eigenvectors with large eigenvalues form the subspace Ji while those with small
eigenvalues form the subspace J⊥

i . The linear regression map Ri gives the parameter values for images
projected onto Ji. For an input image, its parameter region Pi is first determined by projecting it to the
intersection of all J⊥

i ’s and finding the nearest training images. Then Ri is used to obtain the parameters.

improve the accuracy of pose estimation in each re-
gion. Also, since the regression maps are created in
the learning phase, it is faster than creating it on the
fly in the estimation phase. Of course, this gives rise
to a new problem of determining which regression ma-
trix to use for a given input image. For this, we cre-
ate a vector subspace such that, when projected to it,
the difference between images in the same parameter
region tends to collapse. The input image is first pro-
jected onto this “common orthogonal subspace”, and
the nearest training image neighbors are found. Then
the regression matrix that belongs to the parameter
region corresponding to the majority of the neighbors
is applied to the input image to yield the estimation of
the rotation parameters.
We explain the method in more detail in the next

section, report the result of pose estimation experi-
ments in Section 3, and conclude in Section 4.

2 The Method

In the following, we assume all images, training and
input alike, are normalized as much as possible, e.g .,
they are of the same size, with the object centered.
Let us denote the vector space of images by I and its
dimension by d. Vectors in I are considered column
vectors in the following. We divide the vector space
P of pose parameters into N subsets, which we call
parameter regions and denote by P1, . . . , PN , so that
P = P1 ∪ · · · ∪ PN .

2.1 Training Phase

We assume that training images are provided, show-
ing the same object from different views, each with
known pose parameters. Let Ii be the set of train-

ing images with pose parameters in Pi. We denote the
training images in Ii by v

i
1, . . . , v

i
ni

∈ Ii and their corre-
sponding pose parameters by xi1, . . . , x

i
ni

∈ Pi. Define
two matrices

Vi = (vi1, . . . , v
i
ni
)

and
Xi = (xi1, . . . , x

i
ni
)

that have the training images and their corresponding
parameters as columns, respectively.
We also fix two paremeters d1 and d2 as the dimen-

sions of the vector subspaces Ji(i = 1, . . . , N) and J⊥,
respectively. The steps in the training phase is as fol-
lows.

1. Perform the principal component analysis on each
Ii(i = 1, . . . , N).

2. Obtain the d1-dimensional subspace Ji of I spanned
by the eigenvectors with the largest eigenvalues.

3. Fix an orthonormal basis

Ei = (ei1, . . . , e
i
d1
)

of Ji. We consider Ei as a matrix with d1 columns
and d rows. The matrix Ai = ET

i Vi consists of
the coefficient vectors for the training images with
respect to the basis Ei.

4. For each i = 1, . . . , N , let

Ri = XiA
+
i ,

where
A+

i = AT
i (AiA

T
i )

−1

is the Moore-Penrose pseudo inverse of Ai. Then
the pose parameter vector of image v ∈ I can be
obtained as RiE

T
i v.

552



5. Obtain the (N−1)d+d2

N -dimensional subspace J⊥
i of

I spanned by the eigenvectors with the least eigen-
values.

6. Take the intersection of J⊥
i ’s to obtain the common

orthogonal subspace

J⊥ = ∩iJ
⊥
i .

Then, under the assumption of genericity, the di-
mension of J⊥ will be d2. We also orthogonally
project all the training images onto J⊥. Let us de-
note the training image vij projected onto J⊥ by

uij .

Because J⊥ consists of vectors with small eigenval-
ues with respect to the PCA on all of Ii, difference
between projections to J⊥ of images that are in the
same Ii tends to be minimized (Fig. 2). Hence we use
it to classify the input image into the parameter re-
gions.

2.2 Estimation Phase

Having thus prepared, the pose estimation can be
done as follows. For an input image, we first determine
its parameter region Pi by projecting the image to J⊥

and then finding the k nearest vectors that are training
images projected onto J⊥. Let mi be the number of
uij ’s in the k vectors. We assume that the pose of the
input image also belongs to Pi with maximum mi and
use Ri to obtain the pose parameters.

3 Experiments

In this section we report the result of an application
of the method described in the previous section.

3.1 Experimental Setup

Our objective and motivation for this work is to de-
termine the pose of an asteroid from a single image
taken by the planned Hayabusa 2 space probe [1]. How-
ever, since Hayabusa 2 is yet to be launched, we tested
our method with the images and 3D models of asteroid
Itokawa obtained by its predecessor Hayabusa [9].
Training images. We used a 3D model [10] of aster-
oid Itokawa to generate training data. The images are
all 40×40 pixel resolution, so the dimension d = 1600.
We measure the pose by the x-z-x Euler angle (θ, φ, ψ)
in the range of

[0◦, 360◦)× [0◦, 180◦)× [0◦, 360◦).

We rendered the total of 36×18×36 = 23328 training
images, corresponding to the poses in 10◦ intervals, i.e.

(0◦, 0◦, 0◦), (10◦, 0◦, 0◦), (20◦, 0◦, 0◦), . . .
. . . , (350◦, 0◦, 0◦), (0◦, 10◦, 0◦), (10◦, 10◦, 0◦), . . .
. . . , (350◦, 10◦, 0◦), (0◦, 20◦, 0◦), (10◦, 20◦, 0◦), . . .
. . . , (350◦, 170◦, 0◦), (0◦, 0◦, 10◦), (10◦, 0◦, 10◦), . . .
. . . , (350◦, 170◦, 350◦).

Figure 3. Sample training images.

Table 1. Mean absolute error of pose estimation
angles for the linear regression method with and
without the divided parameter space.

Proposed method Undivided method
Angle θ φ ψ θ φ ψ
Error 5.81 2.83 5.48 34.07 29.47 59.27

Fig. 3 shows sample training images. We divided the
training images into N = 32 non-overlapping sets, ac-
cording to the combination of 4 × 2 × 4 = 32 regions
in which each angle has 90◦ range. Thus, each Ii con-
tained 729 images.
Parameter space. As the parameter space P used
in the method, we used the vector space of 3× 3 real-
valued matrices, rather than the three-parameter space
of Euler angles. Thus, for each rendered image, we
used the rotation matrix corresponding to the Euler
angles as the corresponding parameter. In the estima-
tion phase, the regression map Ri also gives a 3 × 3
matrix, which is not necessarily a rotation matrix; let
us denote it by M . To recover the rotation parame-
ters, we first find the rotation matrixM ′ nearest toM .
This can be done by singular value decomposition:

M = UWV T ,

where U, V are orthogonal matrices and W is a diag-
onal matrix. By replacing W by the identity matrix,
we obtain an orthogonal matrix

M ′ = UV T .

The Euler angle can then be recovered from M ′ in a
standard way.

Other parameters. The dimensions for the sub-
spaces were d1 = 300 and d2 = 320. The number of
nearest neighbors to search in the common orthogonal
subspace J⊥ was k = 4.

3.2 Results

The experiments were carried out on an AMD
Opteron 6276 Processor with 2.3GHz clock speed. The
learning phase took about 72 hours without any paral-
lelization, most of which was spent finding the common
orthogonal subspace J⊥. The pose estimation takes
about 10 seconds for each input image.

Quantitative evaluation. To quantitatively evalu-
ate the regression error, we rendered 23328 test im-
ages of the same 3D model with the angle parameters
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Figure 4. The ratio of the cases where the cor-
rect parameter region was determined for a test
image. The horizontal axis is k, which is the num-
ber of neighboring training images to find in the
common orthogonal subspace.

coming between those of training images, i.e.,

(5◦, 5◦, 5◦), (15◦, 5◦, 5◦), . . . , (355◦, 175◦, 355◦),

so that no training image is included in the test images.
To measure the effect of the division of the parame-
ter space, we compared the proposed method with the
conventional pose estimation with a single linear re-
gression matrix. Then we measured the absolute angle
difference between the true value and the estimated
value of the three angles θ, φ and ψ. Table 1 shows the
results for the proposed method with divided param-
eter space, assuming the correct region is found, and
the conventional method with a single linear regression
map.
Determining the parameter region. Separately,
we tried different value of k, the number of neighbor-
ing training images to find in the common orthogonal
subspace. Fig. 4 shows the ratio of the cases where the
correct parameter region was determined.
Evaluation with real images. We also tested on
real images of asteroid Itokawa taken by the Hayabusa
space probe [9]. Although we do not have the true pose
parameters, the estimation results seem to be reason-
able, as can be seen from the comparison of the input
images and the rendering of the 3D model using the
estimated pose parameters (Fig. 1).

4 Conclusion

In this paper, we present an appearance-based linear
regression method for pose estimation from a single im-
age of a 3D object, which can have any pose in the full
space of three degree-of-freedom rotation parameters.
We accomplish this by dividing the parameter space
into fixed multiple regions and creating a separate re-
gression matrix for each region, a linear approach sim-
pler than support vector regression or locally linear
embedded regression. To determine which regression
matrix to use for a given input image, we create a
“common orthogonal subspace” such that, when pro-
jected to it, the difference between images in the same

parameter region tends to collapse. By allowing the
regression matrices to differ for different regions, we
improve the accuracy of pose estimation in each re-
gion. Also, since the regression maps are created in
the learning phase, it is faster than creating it on the
fly in the estimation phase. We report the result of
experiments applying the method for pose estimation
using actual asteroid images and 3D models.
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