14-28

MVA2015 IAPR International Conference on Machine Vision Applications, May 18-22, 2015, Tokyo, JAPAN

View Extension for Teleoperated MAV

Ren Foo Lim,

Akihiko Torii,

Masatoshi Okutomi

Tokyo Institute of Technology
Tokyo, Japan
{rfoo®ok., torii@, mxo@} ctrl.titech.ac.jp

Abstract

In this paper, we propose a method to extend the field
of view (FoV) of cameras mounted on Micro Aerial Ve-
hicles (MAVs). The idea is to stitch together appropri-
ate sections of the panorama to the camera frame. The
proposed system efficiently performs view extension by
fusing fast tracking and feature descriptor matching
into the stitching algorithm. The quality of the ex-
tended view is further improved by refining the trans-
formation using weighted least squares. We demon-
strate the success of our system in real cases where the
distance from one panorama to the mext panorama is
10m.

1 Introduction

Vision based MAV systems are getting popular[3, 6, 9,
10] because cameras are lightweight and can capture
large amounts of information. This is important since
current MAVs have limited flight time and load capac-
ity. The information provided by cameras can now be
used to replace GPS sensors in localisation [4] and re-
place laser scanners in capturing 3D information[14].
The greatest advantage of cameras is that they allow
the operator to explore the environment without actu-
ally being there. Unfortunately, teleoperating MAVs
is difficult because the camera has a narrow FoV. This
forces the operator to remember the environment so
that they can avoid obstacles.

Common methods to increase FoV include: adding
more cameras and using large FoV lenses or mirrors.
Adding more cameras will increase the weight and com-
munication load while large FoV lenses and mirrors re-
duces image quality. In this paper, we will solve this
problem through software implementation. The basic
idea is to use panoramas to increase the horizontal FoV
to 180° while maintaining the information contained
in the camera frame, as shown in Figure 1. The re-
quired panorama can be obtained from databases such
as Google Street View. This way, the MAV will only
need to have one camera on board.

The idea of using panoramas to extend FoV has been
explored previously by Zhang et al.[15] where larger
FoV was achieved by repeating sections of the input
frame while using the panorama as a guide. Prior to
that is the work by Humphrey et al.[5] which combines
two perspective images simultaneously taken from one
large FoV camera and another narrow FoV camera
to achieve the same effect. Zhang’s work cannot be
used when there are no repeated structures in the en-
vironment while Humphrey’s work cannot provide 180°
FoV.

Our system makes two contributions by improving
on the basic image stitching algorithm that is described
in Szeliski’s book[12]:

530

Extended View
.

Current
Camera
Frame

Database

Figure 1. An outline of the proposed system;
showing how images from a MAV’s camera (red
box) and panorama from a database are used to
increase the FoV. Red crosses mark the matched
features between the panorama and the camera
frame. (This Figure is best viewed in colour.)

e Improve efficiency by reducing the amount of com-
putation performed (Section 3).

e Produce visually good extended view when viewed
as a continuous image sequence (Section 4).

2 Algorithm Overview

At the core of the system is the image stitching algo-
rithm as detailed in Szeliski’s book[12]. A flowchart
showing the overview of the algorithm is shown in Fig-
ure 2.

The inputs for our algorithm are (A) a panorama
from the database and a camera frame from the MAV.
We first search for the region in the panorama which
matches the camera frame. This is done by (C) ex-
tracting SURF[1] features, (D) matching them and
(E) computing the transformation matrix from the
matches. Once we know where the matched region on
the panorama is, we can use the surrounding region to
extend the FoV. This is done by (F) warping and crop-
ping the panorama such that the horizontal FoV is 180°
while the vertical FoV is the same as the camera frame
before stitching the panorama to the camera frame.
The final image will consist of three sections: the mid-
dle section is the camera frame while the left and right
sections are obtained from the warped panorama.

Our contribution here is the improvement in the
computational efficiency and visual representation. Ef-
ficiency is improved by reducing the amount of SURF
computation through (B) feature tracking and by re-
ducing the number of features matched in the matching

phase (Section 3). The appearance of the extended
view is improved through (E) the refinement of the
transformation matrix and the suppression of unstable
transformations (Section 4).

3 Improving the Efficiency

We have analysed the matching accuracy and com-
putation time of SIFT[8], SURF[1], ORB[11] and
BRISK][7] on pairs of images. From our experiments,
we found that SIFT outperforms all the other descrip-
tors in terms of matching accuracy but is the slowest
to compute. ORB and BRISK were significantly faster
than the rest but had low matching accuracy. This
may be due to the large distortion in the panorama.
Finally, SURF performed almost as well as SIFT and
can be compute faster compared to SIFT. Taking into
account both accuracy and computation time, we de-
cided to use SURF.

Choosing efficient descriptors alone will not increase
the efficiency of the system. In order to improve ef-
ficiency, we exploit the fact that the camera frames
are image sequences (live previews) with the same ob-
ject appearing in multiple frames. Therefore, there is
no need to recompute features that have already been
computed previously. To achieve this, we use optical
flow[2] to track the position of features that have al-
ready been detected and mask them in current camera
frame (Process B in Figure 2). This way, the system
will only compute SURF descriptors on new features
(Process C) and the position of existing features are
updated without recomputing their descriptors.

To further increase the computational speed, our
system performs matching (Process D) using only a
subset of the panorama features. This is explained by
Figure 3. Features in this subset are determined by
first finding the rectangular region of the panorama
that matches the previous camera frame (red box).
The width and height of this rectangle is then dou-
bled to include nearby features. The features in this
expanded rectangle (green box) are the features in the
matching subset.

4 Producing Good Extended View

The quality of the extended view depends on the
transformation computed (Process E of Figure 2).
We compared similarity, affine and homography
transformation by computing overlap errors among
them. This was done by performing image subtraction
between the camera frame and the region of the
warped panorama overlapped by the camera frame
and calculating the sum of squared difference (SSD)
per pixel for a video sequence with 600 frames. The
results are shown in Figure 4. Similarity transfor-
mation is chosen because it has the least median
error. Although homography’s SSD per pixel error
is comparable to that of similarity, its higher degree
of freedom also causes more deformation to the
panorama. This can be seen in Figure 5. Notice
how affine and homography transformations cause the
buildings to be more tilted than similarity transform.

Similarity transform is computed in two steps:

531

(E) - Calculate & Refine Transformation

V' (F) - Warp, Stitch & Crop

Figure 2. Algorithm Overview. We improve the
efficiency and visual representation by extend-
ing the basic stitching algorithm (C, D, F). The
main modifications are in feature tracking (B)
and transformation matrix computation (E). The
yellow, green and red crosses mark features de-
tected in the panorama, previous camera frame
and current camera frame respectively.

Figure 3. Features located outside the green rect-
angle on the panorama (left) are not used in the
matching process. The red rectangle is the region
that matched the previous camera frame (right)

1. Calculate the best fit transformation to remove
outliers

2. Refine transformation to improve appearance

RANSAC can be used to remove outliers but this is
not enough because it will produce different transfor-
mation matrices due to the randomness in seed gener-
ation. This results in large changes (unstable transfor-
mations) in the extended view even when the camera
is not moving. To alleviate this, we use RANSAC only
as an initialisation step to determine the first transfor-
mation matrix and inliers. The inliers are then tracked
in new camera frames and then used to calculate new
transformation matrices instead of using RANSAC. We
call this the inlier tracking method. The position of the
tracked inliers are obtained from the feature tracking
process (Process B in Figure 2). Our system automat-
ically switch back to using RANSAC when there are
not enough inliers.

The inlier tracking method consists of three steps:
The first step is to estimate the transformation us-
ing the inliers that was tracked from previous camera
frames. The estimated transformation is then used to
find new inliers in the new camera frame. The trans-
formation matrix is then recomputed using both new
and old inliers.

Image stitching artifacts sometimes appear in the
extended view because the edge of the camera frame
does not match to the panorama well enough. To re-
duce this effect, the transformation matrix is refined
by applying exponentially weighted least squares on all
the inliers. Inliers near the edge of the camera frame
are given more weight so that the panorama sections
will join to the camera frame smoothly. By doing so,
the seam where the panorama joins to the camera will
become less visible and since no modification is made
to the camera frame, it still retains all the original in-
formation it has before.

5 Experiment Results

We evaluated our system on 2 dataset:

1. Google Pittsburgh Research Dataset! cap-
tured by a panorama camera rig mounted on top
of a car that was driven along a stretch of road.
The input video was made by creating perspective
cut-outs (640 x 480 pixels) from the panoramas
(3328 x 1664 pixels).

IProvided and copyrighted by Google

532

x 104

401 * 1

3.5¢ L i
|

3.0t : .

25} | ,
| +

207 : . 1

*

15 139463 ¢]

100 & ! 1
T

05 [i3g7ea | E—

J J
Similarity Affine Homography

Figure 4. A comparison of the SSD per pixel be-
tween Similarity, Affine and Homography trans-
formation. The median error for each transfor-
mation is displayed beside each plot.

Figure 5. Extended views produced by Similarity,
Affine and Homography transformations and the
corresponding panorama used.

2. Real MAV captured video (640 x 360 pixels)
taken by a drone flying in a large field. The re-
quired panoramas (3584 x 1792 pixels) were cap-
tured using RICOH THETA? camera.

We implemented the system in Python. The re-
quired image processing functions were obtained from
OpenCV. The system can operate between 3 to 5
frames per second on a core-i7 computer with 16Gb
RAM. Scenes with more features will require more time
for feature computation and matching.

Throughout the experiment, we manually select the
panorama closest to the camera frame as the input
panorama. This was done to separate the problem of
panorama selection from view extension.

Extended views for translational and rotational mo-
tion are shown in figures 6 and 7. Our system can
produce good extended views even for panoramas that
are 5m away from the camera centre (first image in
Figure 6), demonstrating that it can be used in real

2https://theta360.com

Figure 6. View extension results for the Google
Pittsburgh Research Dataset. The distance be-
tween the position of the panorama camera
and MAV camera was varied between bm(top)
and Om(second from bottom). Bottom:
Panorama used. The MAV camera frame is high-
lighted by the red box.

533

Figure 7. View extension result for real MAV
captured video (first seven images) and the
panorama used (Bottom). The MAV camera
frame is highlighted by the red box.

Figure 8. Examples of the poor extension caused
by features accumulating in the centre of the
camera frame. Bottom Left: Panorama used.
Bottom Right: Inliers (green dots). (This Fig-
ure is best viewed in colour)

world cases since the distance between the panoramic
images in Google Street View is about 10m[13].
Limitations: Poor extended views are produced when
there are not enough matched features near the edge
of the camera frame. Examples are shown in Figure 8.
Note the obvious discontinuity in the region where the
panorama connects to the camera frame. Despite this,
there is still enough information to aid navigation.

6 Conclusion

We have proposed a view extension system that can ex-
tend the horizontal FoV up to 180° without the need
for any hardware modification. Our system takes in a
panorama and the camera frame as inputs and stitches
them together to form the extended view. The sys-
tem’s efficiency was increased by reducing the number
of features computed and matched while the appear-
ance of the extended view was improved by refining the
transformation matrix and suppressing unstable trans-
formations. Good extended views can be produced
even when the distance between the camera and the
nearest panorama is bm, demonstrating that it can be
used in real cases.

As future work, we plan to update the panorama
in the database using the camera frame so that more
recent information is also available in the database.

Acknowledgments: This work was partially sup-
ported by the Grants-in-Aid for Scientific Re-
search (no. 25240025) from the Japan Society for
the Promotion of Science.

534

References

[

2l

B8l

(4]

(6]

(7]

(9]

(10]

(1]

(12]

(13]

(14]

(15]

Herbert Bay, Tinne Tuytelaars, and Luc Van Gool.
Surf: Speeded up robust features. In ECCYV, pages
404-417. Springer, 2006.

Jean-Yves Bouguet. Pyramidal implementation of the
affine lucas kanade feature tracker description of the
algorithm. Intel Corporation, 5, 2001.

Christophe De Wagter, Sjoerd Tijmons, Bart DW Remes,
and Guido CHE de Croon. Autonomous flight of a 20-
gram flapping wing mav with a 4-gram onboard stereo
vision system. In ICRA, pages 4982-4987. IEEE, 2014.
Friedrich Fraundorfer, Lionel Heng, Dominik Honeg-
ger, Gim Hee Lee, Lorenz Meier, Petri Tanskanen,
and Marc Pollefeys. Vision-based autonomous map-
ping and exploration using a quadrotor mav. In IROS,
pages 4557-4564. IEEE, 2012.

Curtis M Humphrey, Stephen R Motter, Julie A Adams,
and Mark Gonyea. A human eye like perspective for
remote vision. In SMC, pages 1650—-1655. IEEE, 2009.
Alex G Kendall, Nishaad N Salvapantula, and Karl A
Stol. On-board object tracking control of a quadcopter
with monocular vision. In ICUAS, pages 404-411.
IEEE, 2014.

Stefan Leutenegger, Margarita Chli, and Roland Yves
Siegwart. Brisk: Binary robust invariant scalable key-
points. In ICCV, pages 2548-2555. IEEE, 2011.

David G Lowe. Distinctive image features from scale-
invariant keypoints. IJCV, 60(2):91-110, 2004.
Christian Mostegel, Andreas Wendel, and Horst Bischof.
Active monocular localization: Towards autonomous

monocular exploration for multirotor mavs.
Jesus Pestana, Jose Luis Sanchez-Lopez, Pascual Cam-

poy, and Srikanth Saripalli. Vision based gps-denied
object tracking and following for unmanned aerial ve-
hicles. In SSRR, pages 1-6. IEEE, 2013.

Ethan Rublee, Vincent Rabaud, Kurt Konolige, and
Gary Bradski. Orb: an efficient alternative to sift or
surf. In ICCV, pages 25664-2571. IEEE, 2011.
Richard Szeliski. Computer vision: algorithms and ap-
plications. Springer, 2010.

Akihiko Torii, Josef Sivic, Toma Pajdla, and Masatoshi
Okutomi. Visual place recognition with repetitive struc-
tures. In CVPR, pages 883-890. IEEE, 2013.
Andreas Wendel, Michael Maurer, Gottfried Graber,
Thomas Pock, and Horst Bischof. Dense reconstruc-
tion on-the-fly. In CVPR, pages 1450-1457. IEEE,
2012.

Yinda Zhang, Jianxiong Xiao, James Hays, and Ping
Tan. Framebreak: dramatic image extrapolation by
guided shift-maps. In CVPR, pages 1171-1178. IEEE,
2013.

