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Abstract

We present a closed-form solution to estimate the
covariance of the resultant transformation provided by
the Iterative Closest Point (ICP) algorithm for 3D
point cloud registration. We extend an existing work
[1] that estimates ICP’s covariance in 2D with point to
plane error metric to 3D with point to point and point
to plane error metrics. Moreover, we do not make any
assumption on the noise present in the sensor data and
have no constraints on the estimated rigid transforma-
tion.The source code of our implementation is made
publicly available, which can be adapted to work for
ICP with different error metrics with minor changes.
Our preliminary results show that ICP’s covariance is
lower at a global minimum than at a local minima.

1 Introduction

Iterative Closest Point (ICP) algorithm as initially
proposed in [2] has been applied to various applications
ranging from scan matching, odometry estimation [3],
3D mapping in robotics to point cloud registration and
reconstruction in 3D computer vision. Given two point
clouds, ICP algorithm estimates the rigid transforma-
tion between them. ICP algorithm establishes corre-
spondences between the source and the target point
clouds, finds a transformation that minimizes an error
metric/objective function and transforms the source
point cloud based on the transformation estimate. It
iterates over these steps till the estimated transfor-
mation or the residual error between the source and
the target point clouds is smaller than a set threshold.
In short, ICP estimates the homogeneous transforma-
tion matrix H = [R|T] consisting of a rotation matrix
R and a translation matrix T that aligns the source
point cloud to the target point cloud. ICP has many
variants [4] that employ different error metrics such
as point to point error minimization, point to plane
error minimization, correspondence estimation, rejec-
tion methods or the way in which samples are weighed
etc.
In [1], Andrea Censi has proposed a method to calcu-

late ICP’s covariance and showed experimentally that
their method performs better than the existing meth-
ods. The actual implementation of their method is
only for 2D scan matching with point to plane error
metric. The author represented 2D points in a polar
representation as [r, θ] and only considered the noise in
r coordinate but not in θ, which is an approximation.
This might hold in the case of 2D but it may not be
true in 3D. Another closely related work [5] uses Mb-
ICP (Metric based ICP) and estimates its covariance.
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However, Mb-ICP’s [5] formulation cannot be extended
to 3D directly, i.e., 3D Mb-ICP and its covariance esti-
mation can only be applied to mobile robots that have
negligible rotations in roll and pitch angles. Hence
it cannot be generalized to estimate the transforma-
tion between two point clouds that have six degrees of
freedom. Another recent work [6], provides theoreti-
cal analysis of ICP by linearizing its cost function and
employing the Hessian to calculate the covariance of
ICP.
In this work, we extend the ICP’s covariance formu-

lation as proposed in [1] to work for 3D point cloud
registration. We do not make any assumption and
consider the possibility of noise being present in all
the three variables in 3D. Thus it can be applied to
data acquired by devices with varying sensor noises.
Moreover, our implementation is a generalized method
for 3D ICP’s covariance estimation without any con-
straints on rotation and translation.

2 Covariance of a Minimization Algorithm

In this section, we discuss how to calculate the co-
variance of any algorithm that minimizes an objective
function. The below mentioned theorem can be found
in Andrea Censi’s work [1], but here we provide a de-
tailed explanation on how this equation was arrived
at.
Theorem : Let z be the input/measurements and x

be the output of an algorithm/function A that operates
on/minimizes an objective function J i.e., x = A(z) =
argminxJ(z,x). Then the approximate value of the
covariance of x will be

cov(x) ≈
(

∂2J
∂x2

)−1 (
∂2J
∂z∂x

)
cov(z)

(
∂2J
∂z∂x

)T (
∂2J
∂x2

)−1

(1)

Proof: A(z) can be considered as a function with in-
put z and output x. A(z) can be approximated using
Taylor series expansion at a value z = zo as

x = (A(z)
∣∣
z=zo

) ≈ A(zo) +
∂A

∂zo
(z− zo)

x = (A(z)
∣∣
z=zo

) ≈ A(zo) +
∂A

∂zo
(z)− ∂A

∂zo
(zo) (2)

where ∂A
∂z0

= ∂A
∂z

∣∣
z=z0

. The covariance of an algebraic

expression of the form Bz+ c, where c is a constant, is
equal to Bcov(z)BT . Applying this property in Eqn.2,
where A(zo) and

∂A
∂zo

(zo) are constants, results in

cov(x) = cov
(
A(z)

∣∣
z=zo

)
≈ ∂A

∂zo
cov(z)

∂A

∂zo

T

(3)

Substituting the implicit function theorem (mentioned
in the Appendix of [1]) as shown in Eq.4 to Eqn.3,

MVA2015 IAPR International Conference on Machine Vision Applications, May 18-22, 2015, Tokyo, JAPAN14-27

526



∂A
∂zo

= −
(

∂2J
∂x2

)−1 (
∂2J
∂z∂x

)
(4)

results in the final expression as stated in the theorem.

cov(x) = cov
(
A(z)

∣∣
z=zo

)

≈
(
∂2J

∂x2

)−1 (
∂2J

∂z∂x

)
cov(z)

(
∂2J

∂z∂x

)T (
∂2J

∂x2

)−1

In the above equation,
(

∂2J
∂x2

)−1

is a symmetric ma-

trix(shown later), thus not taking the transpose would
not make any difference. This general theorem can
be applied to estimate the covariance of any algorithm
that minimizes an objective function.

3 Estimating ICP’s Covariance for 3D Point
to Point Error Metric

Consider two point clouds P and Q and the rigid
transformation between them is estimated using the
ICP algorithm. The method used to establish the cor-
respondences does not matter. We represent the num-
ber of correspondences used in the final iteration of
ICP between P and Q by n. We estimate the covari-
ance of ICP’s transformation estimate that minimizes a
point to point metric based objective function as shown
in Eqn.5.

J =
∑n

i=1 ‖RPi +T−Qi‖2 (5)

In Eqn.5, {Pi,Qi} are the n correspondences used in
the last iteration of ICP and [R|T] is the homogeneous
transformation estimated by ICP algorithm. For fur-
ther analysis, we will represent the homogeneous trans-
formation [R|T] estimated by ICP as x = [x y z a b c],
where x y z components represent the translation and
a b c represent the rotation in yaw, pitch and roll re-
spectively. Our aim is to estimate the covariance of x,
which represents the transformation estimate returned
by the ICP algorithm.
From Eqn.1, it can be seen that there is a need to

calculate three terms,
(

∂2J
∂x2

)−1

,
(

∂2J
∂z∂x

)
and cov(z),

where J represents the objective function as shown
in Eqn.5, x = [x y z a b c] is the ICP’s transfor-
mation estimate and z represents the n sets of cor-

respondences {Pi,Qi}, where Pi = [Pix Piy Piz]
T
and

Qi = [Qix Qiy Qiz]
T
. We will now discuss how to cal-

culate these three terms.

3.1 Calculation of
(
∂2J
∂x2

)

In 3D,
(

∂2J
∂x2

)
is a 6 × 6 matrix as shown in Eqn.6.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
∂2J
∂x2

) (
∂2J
∂y∂x

) (
∂2J
∂z∂x

) (
∂2J
∂a∂x

) (
∂2J
∂b∂x

) (
∂2J
∂c∂x

)
(

∂2J
∂x∂y

) (
∂2J
∂y2

) (
∂2J
∂z∂y

) (
∂2J
∂a∂y

) (
∂2J
∂b∂y

) (
∂2J
∂c∂y

)
(

∂2J
∂x∂z

) (
∂2J
∂y∂z

) (
∂2J
∂z2

) (
∂2J
∂a∂z

) (
∂2J
∂b∂z

) (
∂2J
∂c∂z

)
(

∂2J
∂x∂a

) (
∂2J
∂y∂a

) (
∂2J
∂z∂a

) (
∂2J
∂a2

) (
∂2J
∂b∂a

) (
∂2J
∂c∂a

)
(

∂2J
∂x∂b

) (
∂2J
∂y∂b

) (
∂2J
∂z∂b

) (
∂2J
∂a∂b

) (
∂2J
∂b2

) (
∂2J
∂c∂b

)
(

∂2J
∂x∂c

) (
∂2J
∂y∂c

) (
∂2J
∂z∂c

) (
∂2J
∂a∂c

) (
∂2J
∂b∂c

) (
∂2J
∂c2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

Looking at the above matrix, one cannot presume that
it will be a symmetric matrix. After estimating the
closed form expressions for each of the terms, this ma-
trix turned out to be a symmetric one. Now, we will
see how to calculate the closed form expressions for

some of the terms in
(

∂2J
∂x2

)
.

We represent the objective function J ,
J =

∑n
i=1 ‖RPi +T−Qi‖2 as J =

∑n
i=1 F

2 and
F = ‖G‖, which implies that G = RPi +T−Qi.
For each set of correspondences {Pi,Qi}, we estimate(

∂2Ji

∂x2

)
in which Ji depends on the value of ith cor-

respondences. After getting the values of
(

∂2Ji

∂x2

)
for

each set of correspondences, we sum them to form the

final estimate of
(

∂2J
∂x2

)
i.e.,

(
∂2J
∂x2

)
=

∑n
i=1

(
∂2Ji

∂x2

)
. To

calculate
(

∂2Ji

∂x2

)
, which is a 6× 6 matrix, we start by

computing each of its components as shown below.

∂Ji

∂x = 2 · F · ∂F
∂x

∂F
∂x = JG(x)T ·G

‖G‖ (7)

In Eqn.7, JG(x) represents the Jacobian of G
with respect to x and it involves the calculation
of the derivative of a norm, which is shown at
https://sites.google.com/site/icpcovariance/appendix

∂Ji

∂x = 2 · F · JG(x)T ·G
‖G‖ = 2 · JG(x)T ·G

JG(x) =
∂G
∂x = ∂

∂x (RPi +T−Qi)

JG(x) =
∂
∂x

([
r11 r12 r13
r21 r22 r23
r31 r32 r33

][
Pix

Piy

Piz

]
+

[
x
y
z

]
−
[
Qix

Qiy

Qiz

])
=

[
1
0
0

]
(8)

∂Ji

∂x = 2 · [1 0 0] ·
[
[RPi +T]−

[
Qix

Qiy

Qiz

]]
(9)

∂Ji

∂x = 2 · (r11 · Pix + r12 · Piy + r13 · Piz + x−Qix) (10)

Here, Eqn.10 is a closed form expression and many

other terms like
(

∂2Ji

∂x2

)
,
(

∂2Ji

∂y∂x

)
etc., can be calcu-

lated from this term. Moving forward, the calculation

of
(

∂2Ji

∂a2

)
and related terms become more complex as

the variables a, b, c with respect to which we partially
derive, appear in the rotation matrix R. In Eqn.11, we

show the expression for
(

∂2Ji

∂a2

)
in terms of jacobians.

(
∂2Ji

∂a2

)
= 2 · ( ∂

∂a

(
JG(a)

T
) ·G+ JG(a)

T · ∂G
∂a

)
(11)

where JG(a) is the jacobian of G with respect to a and
JG(a) = ∂G

∂a = ∂R
∂a (as other terms are independent

of a). Matrices R and ∂R
∂a are given in the Appendix

for your reference. From Eqn.11, it can be seen that
the calculations become more intense and thus we em-
ployed symbolic toolbox in MatLab to calculate the
jacobians. In a way, MatLab helped us to verify the
values of previously mentioned terms that become con-
stants or zeros. In this way, each term of the 6 × 6

matrix
(

∂2Ji

∂x2

)
can be calculated and finally summed

up to get
(

∂2J
∂x2

)
.
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3.2 Calculation of
(

∂2J
∂z∂x

)
To find the covariance from Eqn.1, we need to evalu-

ate one more term
(

∂2J
∂z∂x

)
whose matrix size is 6×6n,

where n is the number of correspondences {Pi,Qi} and
is shown below.⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2J
∂Pix∂x

∂2J
∂Piy∂x

∂2J
∂Piz∂x

∂2J
∂Pix∂y

∂2J
∂Piy∂y

∂2J
∂Piz∂y

∂2J
∂Pix∂z

∂2J
∂Piy∂z

∂2J
∂Piz∂z

...(in terms of Qi)...
∂2J

∂Pix∂a
∂2J

∂Piy∂a
∂2J

∂Piz∂a
...for n correspondences...

∂2J
∂Pix∂b

∂2J
∂Piy∂b

∂2J
∂Piz∂b

∂2J
∂Pix∂c

∂2J
∂Piy∂c

∂2J
∂Piz∂c

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In the same way as attempted before, each term in
this matrix can be calculated or estimated using Mat-
Lab software. The exact closed form expressions can
be generated from the MatLab scripts provided in the
source code.

3.3 Estimation of cov(z)

This is to be set in accordance with the noise present
in the acquired sensor readings. It will be a matrix of
size 6n×6n, where n is the number of established corre-
spondences in the last iteration. In the case where the
sensor measurements z are uncorrelated, cov(z) will be
a diagonal matrix as shown in Eqn.12.

cov(z) =

⎡
⎢⎢⎣
cov(P1) 0 · · · 0

0 cov(Q1) · · · 0

0
...

. . .
...

0 0 · · · cov(Qn)

⎤
⎥⎥⎦ (12)

4 Implementation Details

The source code of ICP’s covariance for 3D point to
point and point to plane error metrics is available at
https://sites.google.com/site/icpcovariance/
We have developed a modular framework for ICP’s

covariance estimation. The first module is a MatLab
script that deals with the calculation of the closed form
expressions for the jacobians based on the objective
function. The second module is a C++ package that
calculates the ICP’s covariance based on Eqn.1. The
closed form expressions generated from the MatLab
script are to be copied in to the C++ code. The C++
code takes in two point clouds, finds the transforma-
tion using ICP, and estimates the resultant transfor-
mation’s covariance.
If the input point clouds are not closely aligned to

each other, then there is no guarantee that ICP will
converge to a global minimum. Hence, in the source
code, we employ feature matching technique to bring
the source and target point clouds close enough so that
ICP can converge to a global minimum. Essentially,
we extract uniform keypoints on both the source and
target point clouds, extract SHOT [7] feature descrip-
tors, find nearest neighbour matches of those feature
descriptors and finally estimate the consensual trans-
formation using RANSAC.

Once the source and target point clouds are aligned
close enough via feature matching technique, ICP algo-
rithm takes over for accurate point cloud registration,
where the correspondences are the nearest neighbours
between the 3D point clouds and the objective func-
tion is either point to point or point to plane error
metric. It should be noted that only the correspon-
dences in the last iteration are used to estimate the
covariance of ICP. As the number of correspondences,
n, increases, the covariance computation becomes more
intensive. Hence the number of correspondences to be
used for covariance computation can be limited to a
certain threshold to efficiently estimate the ICP’s co-
variance.
In order to adapt the ICP’s covariance implementa-

tion to different variants, the objective function in both
the MatLab script and C++ code should be changed
accordingly and the calculated jacobians should be
copied to the C++ package. The provided source code
has both point to point and point to plane error metric
based ICP’s covariance estimation routines.

5 ICP’s Covariance for Point to Plane Error
Metric

Here, we extend the point to point error metric based
ICP’s covariance estimation to point to plane error
metric. As mentioned before the important changes
to be made are the objective functions used in both
the C++ and MatLab scripts and the Jacobians esti-
mated from the MatLab scripts are to be loaded into
the C++ script. The objective function employed for
point to plane [8] error metric is shown below.

J =
∑n

i=1 [(RPi +T−Qi).ni]
2 (13)

where ni is the unit surface normal vector at Qi and
all other variables mean the same as in Eqn.5. Please
refer to the source code for the closed-form expressions.

6 Experimental Results

Our preliminary experimental evaluation shows that
the ICP’s covariance is lower at the global minimum
than at a local minima. This may highlight the possi-
bility of exploiting ICP’s covariance in guiding the ICP
to converge to the global minimum by branching from
a local minima. To quantitatively show the covariance
of ICP at a local minima and the global minimum, con-
sider the data and the model point clouds as shown in
Fig. 1(a,b), where the partial data point cloud has to
be registered to a complete model point cloud. These
data and model point clouds are also provided with the
source code.
As mentioned before, to closely align the data and

model point clouds, we employ the feature match-
ing technique. We extract uniform keypoints on both
the data and model point clouds and match them via
SHOT feature descriptors [7]. Later, the false feature
correspondences are removed via RANSAC and the fi-
nal consensual transformation is estimated. The estab-
lished positive correspondences are visualized in Fig.
1(c). The data point cloud is transformed based on
this estimated transformation and ICP is executed on
these two closely aligned point clouds. The resultant
point cloud after successful registration of data and
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(a) Data (b) Model

(c) Resultant Keypoint correspondences after feature
matching technique

(d) ICP converging to a global minimum

⎡
⎢⎢⎢⎢⎢⎣

1.7e− 07 1.4e− 08 −3.3e− 08 −5.8e− 08 5.9e− 09 −9.2e− 08
1.5e− 08 2.1e− 07 3.8e− 09 −1.1e− 07 3.6e− 08 −1.0e− 09
−3.1e− 08 4.0e− 09 2.2e− 07 −7.4e− 09 1.6e− 07 5.9e− 08
−3.6e− 08 −1.1e− 07 −1.0e− 08 5.8e− 07 −3.1e− 07 3.2e− 07
−4.0e− 08 3.5e− 08 1.7e− 07 −3.0e− 07 1.1e− 06 −6.0e− 07
−7.9e− 09 1.5e− 09 4.7e− 08 3.0e− 07 −6.2e− 07 1.0e− 06

⎤
⎥⎥⎥⎥⎥⎦

(e) ICP’s covariance at the global minimum for the case (d)

(f) ICP converges to a local minima on the given data
and model point clouds when the feature matching tech-
nique is not employed.

⎡
⎢⎢⎢⎢⎢⎣

3.7e− 05 1.1e− 05 1.2e− 05 −1.8e− 05 −5.0e− 05 4.8e− 05
−3.6e− 06 2.0e− 05 2.5e− 06 8.9e− 06 4.2e− 06 1.9e− 05
3.4e− 06 4.9e− 06 1.4e− 05 −1.4e− 06 −4.5e− 06 1.9e− 05
−1.4e− 05 3.8e− 06 −3.8e− 06 0.00011 −1.1e− 05 −2.1e− 05
−5.5e− 05 −1.7e− 05 −1.8e− 05 −5.3e− 06 0.00015 −5.6e− 05
−5.8e− 06 2.1e− 05 1.2e− 05 −4.0e− 06 2.1e− 05 8.4e− 05

⎤
⎥⎥⎥⎥⎥⎦

(g) ICP’s covariance at a local minima for the case (f)

Figure 1: Visualizing the local and global convergence
and covariance of ICP algorithm on given data and
model point clouds with point to plane error metric.

model point clouds via point to plane ICP variant is
shown in Fig. 1(d).
However, without the feature matching technique,

ICP does not converge to a global minimum on the pro-

vided data and model point clouds as there is a large
orientation difference between them. Hence, in this
case, where feature matching is not employed, ICP con-
verges to a local minima, in other words, ICP fails and
the registered point cloud is shown in Fig. 1(f). Fea-
ture matching is only necessary when there is large ori-
entation difference between the data and model point
clouds, otherwise ICP can possibly converge to global
minimum.

In Fig. 1(e), we show the ICP covariance matrix at
the global minimum and in Fig. 1(g), the ICP covari-
ance matrix at a local minima for point to plane error
metric based ICP is shown. It can be noticed from Fig.
1(e) and Fig. 1(g) that the ICP’s covariance is higher
at a local minima that at the global minimum.

7 Conclusion and Future Work

We discussed an existing formulation [1] for ICP’s
covariance estimation and extended it from 2D to 3D
without making any assumptions. The source code
of the implementation for ICP’s covariance estimation
for 3D point to point and point to plane error met-
ric is made publicly available. One important point to
note is that only the correspondences in the final itera-
tion are used for covariance estimation in the provided
implementation and also in [1]. In short, there is no
information that is being considered on how the ICP
algorithm has reached the final step. This can be a
key direction to explore in the future. Our preliminary
results show that ICP’s covariance is lower at a global
minima as compared to local minima but there is a
need to perform extensive evaluation to confirm this.
This highlights a possibility of exploring if the ICP’s
covariance can be used to guide the ICP algorithm to
the global minimum from a local minima.
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