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Abstract

Registration is a fundamental problem in a myriad
of applications ranging from heritage reconstruction to
industrial applications. Descriptors are an important
part of the registration pipeline as well as a very active
research field. However, the sets used to illustrate de-
scriptor performance have often undergone several pre-
processing steps such as noise filtering, hole filling or
outlier removal. These steps simplify the problem but
are not readily available in many applications. In this
paper we compare the performances of 4 state of the
art shape descriptors: SHOT [1], Spin Image [2], FPFH
[3] and 3DSC [4]. Experiments were carried out with
real as well as synthetic data paying special attention
to issues commonly present in real data (noise, outliers
and low overlap). The method obtaining a best result
overall is SHOT, based mostly on the results with syn-
thetic data. Experiments with real data showed how
state of the art descriptors are not yet able to produce
optimal results in the most challenging scenarios.

1 Introduction

3D registration is a very important problem in a va-
riety of fields ranging from medical imaging to indus-
trial applications. Aligning two or more views of the
same object is a complicated task which often results
in huge computational cost. This results from the size
of the search space related to the problem: in order
to register two point clouds, a minimum of three point
correspondences are needed to determine a 3D rigid
motion. Thus, the number of possible correspondences
is in O(n6). Although current algorithms do manage to
avoid exhaustive searches, the complexity of the prob-
lem as well as the sizes of the datasets (from tens of
thousands of points to millions of points) demand al-
gorithms that are as efficient as possible.
The current state of the art on registration can be

organized in terms of the matching pipeline [5]. We di-
vide the registration process in two main parts: Coarse
and Fine Matching. The first provides an initial pose
that is refined in the second. The Iterative Clos-
est Point (ICP) algorithm [6] is a de-facto standard
for many fine matching problems. Concerning coarse
matching, although many strategies aiming at reducing
computational costs [7] exist, the most active area has
recently been Shape Descriptor functions. Although
very different from each other, these functions share
the common goal of providing a numerical representa-
tion of the shape of objects around points.
A key factor for shape descriptors is their resiliency

to some of the most commonly appearing scanning
artifacts. Although extensive works [8] studying the

performance of shape descriptors exist, we feel that
an in-depth study on the effects of these artifacts for
state of the art descriptors for rigid registration has
not yet been conducted. Consequently, in this paper
we present a comparison of 4 state of the art shape
descriptors. We use real and synthetic data in order to
assess the effect of different levels of noise and different
ratios of overlap in descriptor performance. We tested
four different descriptors which are extensively used
in the literature: SHOT[1], Spin Image[2], Fast Point
Feature Histogram (FPFH) [3] and 3D Shape Context
(3DSC) [4]. We use these approaches over five different
models, both synthetic and real data. The synthetic
data models are the Bunny, Buddha and Dragon mod-
els from the Stanford Repository [9], which allows us to
gain further insight in the problem by controlling vari-
ables such as the amount of noise included, and the
real data are Bust and Joints models, from our own
scanning system [10], which makes it possible to show
the behavior of algorithms in a realistic setting.

2 Methodology

The state of the art of 3D registration is mostly fo-
cused on detection/description. Local shape descrip-
tors provide a numerical representations of the shape
of the object around surface points. This already chal-
lenging situation is made even more difficult by the
objects being represented as a discrete set of points.
These points might contain noise and, thus, fail to
precisely represent the object they belong to. Conse-
quently, descriptors that are robust to small quantities
of noise in points are sought. Additionally, any match-
ing algorithm typically has to deal with the two objects
being matched not being exactly identical but instead
presenting a certain area of overlap. This is the case,
for example, of the problem of reconstructing an ob-
ject from several views. Descriptors that are able to fo-
cus on significant common areas are desirable. Finally,
scanners sometimes produce spurious ”outlier” points
that do not really represent any part of the objects but
nevertheless complicate registration. This is the case
for example for metallic objects causing laser scanners
to output incongruous points due to reflections.

2.1 Descriptors used

We selected four state of the art descriptor methods.
For their implementation, we used the code provided
by the Point Cloud Library (PCL) [11].
Spin Image [2] is a widely used descriptor. The

method considers a point ai and its associated normal
vector �ni. The local shape around ai is codified using
two variables: distance α between each point and sup-
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port line of the normal vector �ni, and the distance β
between each point and the tangent plane P .
Signature of Histograms of OrienTations

(SHOT) [1] stresses the importance of choosing a
good local reference frame (RF). For each point, its
RF is chosen via eigendecomposition of the covariance
matrix of neighboring points. The eigenvectors with
higher eigenvalues are used as the axes of the RF.
Then, the method makes a histogram of the angles
between the normal vectors of the query point and the
neighbors inside a supporting sphere.
Fast Point Feature Histogram (FPFH) [3]

Given a query point p, all points inside a ball of ra-
dius r centered at this point are connected with the
others via a fully interconnected (complete) mesh. For
each query point with normal vector �n, the algorithm
selects another neighboring point q holding that the
angle between �n and �pq is minimum. Then angular
information is calculated and stored (see the paper for
details). A histogram divided into bins is computed
according to the value of the angles between normal
vectors of each pair of neighbors.
Finally, 3D Shape Context (3DSC) [4] describes

points in relation to all the other points in the object
(not only in a neighborhood). Due to the size of the
data sets, this algorithm only uses randomly sampled
points instead of the full-sized data. Specifically, a
coarse histogram is computed using a binned sphere-
space division centered at p.
To sum up, we have considered a widely used de-

scriptor as is Spin Image along with three more re-
cent descriptors. SHOT, is an example of a descriptor
favoring local reference frames that shows a remark-
able resiliency to noise [1]. FPFH is representative of
histogram-based descriptors that obtains good results
with sets of overlap as low as 45% [3]. 3DSC is a de-
scriptor with a totally different approach as not only
points in local neighborhoods are used. We believe
that this selection covers the different approaches that
have proven successful in one way or another in the
recent development of shape descriptors.

2.2 Data used

We use two types of data, processed and real data.
Processed models have either been created syntheti-
cally or have had some kind of post-processing such as
de-noising or smoothing. We consider real models to
be those created with raw data acquired directly from
scanners. The registration of these objects is challeng-
ing due to noise, occlusions and possible outlier points.
Processed Data
Three of the most well-known objects in the lit-

erature are the Bunny, Buddha and Dragon models
the from Stanford Repository [9] (Figure 1). These
datasets consist of several views that seem to have
undergone noise and outlier filtering after acquisition
with a a range scanning system. The Bunny model
is the simplest model with ≈37000 points per view.
All features are clearly defined, without noise or out-
liers. The degree of overlap between consecutive views
is generally high (≈90%). The Buddha model is a lit-
tle more challenging because of its larger size (≈75000
points per view). Additionally, it presents finer de-
tail and some symmetries. Specifically, the base of the
figure is a cylindrical (and thus symmetrical) pedestal

which is a large source of local symmetries and ham-
pers normal space analysis. Finally, the Dragon model
presents ≈42000 points per view, with a considerably
number of symmetries along its transversal axis.

Figure 1. Views of Bunny, Buddha and Dragon
models from the Stanford Repository.

Real Data
In these models no post-processing steps were used

(Figure 2). The challenges here arise from the pres-
ence of noise, low overlap ratios and outliers. The
Bust model was acquired using a structured light sys-
tem [12]. The views of this model contain ≈450000
points. The overlap ratio is ≈50%, depending on the
view. We also focused on the head section of the model
in order to obtain a model with less points (≈100000
points), without losing point density. The most com-
plex registration problem studied in this work is the
Joints model (≈520000 points). This scenario is an in-
stance of the ”bin picking” problem, where a robot arm
is expected to pick an industrial part from an unstruc-
tured heap of similar parts. This data was obtained
using a range scan composed by a laser and a single
camera and presents abundant noise and outliers. The
model consists of a big heap of unsorted parts as well
as a single joint model to be found within the heap.

Figure 2. Real data models. Left: Head of the
Bust model. Right: Joints model.

3 Experimental Evaluation

The descriptor-based coarse matching algorithm
used in this evaluation is the following. Given two
input point clouds A and B, we select a wide base [13]
BA made up of 3 points from set A. For each point in
BA, we search for point correspondences in B. Possi-
ble correspondences are sorted in terms of descriptor
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Figure 3. Results with Bunny model.

Figure 4. Results with Buddha model.

values. In order to discard obviously wrong bases from
set B, the distances between base points are checked.
The bases that pass this test, are used to compute an
alignment movement. Then, the percentage of paired
points and the residue are computed to evaluate the
quality of the coarse alignment. Finally, ICP is ap-
plied in order to refine the movement and complete
the registration process.
Some details on the design decisions for this algo-

rithm follow. First of all, using wide bases makes the
search more robust than using randomized selection
[13]. In order to increase the quality of the bases
BA, we select their points from a reduced group of
keypoints obtained using a Intrinsic Shape Signature
(ISS) detector [14]. The number of descriptor-sorted
correspondences for each point is set to be, k = 50 for
processed data, and k = 100 for real models, after pre-
liminary testing. Finally, and in order to circumvent
having chosen bases falling in non-overlap areas, the
whole search is repeated for r = 10 different bases and
only the best result is outputted. The computational
cost of the algorithm is thus, O(r k3 mlog n). With
processed models the algorithm is able to find solu-
tions after exploring few candidates (small k), there-
fore the computation time is rather small (t̄ = 3min).
However, for more complicated objects, the algorithm
tends to explore all possible candidates and, thus, the
running time increases greatly (timeout = 20hours).
For each model, we compute the Mean Minimum Dis-
tance (MMD) between its points in order to fairly ap-
ply random noise for the tests.
Processed Data
For this datasets we performed extensive tests us-

Figure 5. Results with Dragon model.

ing different levels of noise and overlap. For each
model we considered two views. For each of them we
produced 8 noisy copies. We added Gaussian noise
with varying intensity. For each point, we added ran-
dom noise up to n ∗MMD with n taking eight values
(n ∈ {0.2, 0.5, 0.9, 1, 1.5, 2, 5, 10}). We registered each
model with noisy copies of itself and with noisy con-
secutive view. In the first case, only noise affects reg-
istration while in the second lower overlap is an added
factor. Figures 3, 4 and 5 show the results separately
for every model. Continuous lines correspond to reg-
istrations of the same view while dashed lines stand
for registrations of consecutive views. X-axes contain
the level of noise in each set while Y-axes contain the
percentage of matched points of the first view over the
second view, after coarse matching (and before ICP).
Finally, red dots represent the cases where the approx-
imation is not good enough for ICP to succeed. As the
main aim of coarse matching algorithms is for this not
to happen, we consider a lower ”number of red dots”
to be a measure of algorithm success.
We observed that the overlap between models plays a

more crucial role than noise. All descriptors performed
well even under high amounts of noise when objects
were registered to (noisy) copies of themselves (see full
lines in Figures 3, 4 and 5). Regarding whether or not
ICP was able to converge to the optimal solution after
the descriptor based algorithms, SHOT succeeded in
all 27 registrations, FPFH failed in 1 of them, Spin Im-
age in 2 and 3DSC in 5. However, when different views
of the same object were considered the performance de-
creased. Lower overlap decreases the areas in the two
objects that are actually useful for matching. Conse-
quently, descriptors must do a better job at singling out
areas that do actually correspond to matching parts of
the two objects. Regardless of this, the random choice
of the bases BA plays a significant role. Whenever BA
is chosen to contain a point outside the overlap region
the matching is doomed to fail. Consequently, the fig-
ures should be interpreted in terms of general tenden-
cies and not particular performances. These factors
produce the unstable results depicted in figures 3, 4
and 5 on the dashed lines. Specifically, SHOT failed
to produce usable approximations for ICP in 7 of the
27 cases, 3DSC in 8 and FPFH and Spin Image in 9.
The higher number of problems were detected in the
Buddha model were 22 of the 36 registration run by
all descriptors failed. To sum up, SHOT obtained the
best results in both tests. Even with the problems de-
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tected for noise and low overlap most approximations
(160/202) were enough for ICP refinement. Regard-
ing data, complex objects with symmetries such as the
Buddha proved to be the most challenging.
Real Data
In order to test the descriptor methods in realis-

tic scenarios we performed a set of experiments where
pairs of views of the Head and Bust models were regis-
tered. The Joints model case is substantially different
because, instead of align two different views, we try to
identify a certain shape in a unsorted heap. In these
tests, noise is inherent to the scanning process. Ta-
ble 1 shows shows the overlap between the views, the
overlap after coarse registration and whether or not
ICP succeeded. For the Joints model we provide both
overlapping ratios to notice the size difference of this
particular case.
The performance of descriptor methods with real

data was much worse than with synthetic data. Posi-
tive results were not achieved for all models. Although
we set timeout to be 20 hours and increased the num-
ber of candidate to k = 100, in some cases, descriptors
are not able to find a good approximation or just they
do not find any result. In any case, these times are
too large to be considered usable in real applications.
Concerning descriptor comparison, best results were
obtained by 3DSC and SHOT. FPFH obtained lower
pairing ratio after coarse matching but succeeded in
their main goal of producing an alignment that ICP
could use to produce the correct fine matching, but
only in Head model, which is smaller than Bust.

Table 1. Real data results. Original overlap is
given by two values: A respect to B and vice-
versa. The paired points are only A over B.

Method Orig. Ovlp Pair. Pnts ICP

H
ea
d

SHOT

84% / 54%

33.18% �
SP 2.13% �

FPFH 5.75% �
3DSC 75.15% �

B
u
st

SHOT

86% / 53%

23.12% �
SP 3.29% �

FPFH - �
3DSC 50.47% �

J
o
in
ts

SHOT

4% / 73%

31.24% �
SP - �

FPFH - �
3DSC - �

4 Conclusions

In this paper we analyzed the performance of 4 state
of the art descriptors when dealing with common scan-
ning artifacts. In general terms, SHOT proved to be
the most stable for synthetic data (failing only in 7
out of 54 registrations). In these cases, overlapping
between views becomes more important than noise, be-
cause with single-view tests, almost all methods suc-
ceed. Additionally, objects presenting symmetries such
as the Buddha proved to be more challenging to regis-
ter as seen by the failure rate of 22 of its 36 2-view syn-
thetic registrations. Concerning real data, 3DSC and
SHOT obtained the best initial approximation. Here,
the intrinsic noise from the scanning system becomes

more problematic. Descriptors need bigger searching
radii, and more candidates are needed to achieve a
good alignment results. The need of good methods
able to deal with raw data in a reasonable amount of
time has been shown to be an open problem for the
community as only two descriptors were able to out-
put results usable for ICP within the 20 hours of time
limit set.
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