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Abstract

Using color information in object tracking is a pru-
dent choice, but the vast variety of choices and diffi-
culties of obtaining a desirable stable result, unnerves
many scholars. Color histograms, as a compact and
robust representation is the center of attention while
it suffers from lack of spatial information about colors.
Besides, comparison and updating such histograms in a
meaningful and efficient manner is challenging. In this
paper, we proposed the idea of gridding for color his-
togram, which grants specific statistical property to the
histogram through a decomposition phase followed by a
recombination stage. Additionally, a thorough compar-
ison of the modern similarity functions and model up-
date techniques in RGB colorspace is presented. This
comparison reveals that our proposed method in combi-
nation with established similarity measures, enhances
the tracking performance.

1 Introduction

Histogram-based local descriptors are pervasive
tools in many computer vision tasks, such as image re-
trieval, object tracking, and object recognition. Such
descriptors compress the original distribution, which
save storage and computation time and grant a certain
perceptual robustness to the matching [1]. Being both
compact and invariant to specific changes in the image,
color histograms gained popularity in object tracking,
e.g. the famous mean-shift tracker [2] and color-based
particle filter is built upon this feature.
Histogram of color (hereafter HOC), however, suf-

fers from lack of spatial information and cannot differ-
entiate patterns of colors and just considers the portion
of them in an image. For that, several other cues are
used along with them in systems to improve tracking
accuracy such as texture, motion, shape etc. Further-
more, the quantization effect and perceptual difference
of colors inaugurate more challenges in using this fea-
ture. Nevertheless, HOC is usually in charge of mak-
ing most out of the color information. To alleviate the
shortcomings of this feature, researchers use various
color spaces with special characteristics, employ differ-
ent similarity measures to compare color histograms,
and try to embed necessary spatial information into
the feature whenever possible.
This article focuses on RGB color histograms and

scrutinizes the use of gridding as a simple mathemati-
cal trick to boost the performance of the feature while
preserving all of the advantages of a HOC. Present-
ing a gist of numerous ways in which HOC is used in
RGB space, the manuscript then compare these ideas
and enhance them by proposed scheme, to show the
effectiveness of the gridding idea.

2 Literature Review

2.1 Histogramming

Histograms, by default are a partition of the space
into equal bins. Applied on RGB data, each channel is
partitioned into same-size bins. The result is a regular
histogram of color or R-HOC in which n governs the
coarseness of the bins. Being simple and interpretable,
this type of HOC is the very popular. However, regular
binning for high dimensional data often yields poor
performance: fine binning leads to fluctuations due to
statistically insignificant sample sizes for most bins,
while coarse binning diminishes resolving power [1].

A solution to this issue is to employ adaptive bin-
ning whereby the bins are adapted to the color distri-
bution. Clustering methods such as k-means provides
such binning, which are then used to make an adap-
tive histogram of colors (or A-HOC). The number of
bins in this method is parameterized by color clusters.
Figure 1 illustrates the difference between regular and
adaptive binning to construct color histograms.

2.2 Similarity Functions

In order to match histograms, a similarity function
must be coupled with the color feature. Being an em-
pirical estimate of a probability distribution of feature,
histograms can be treated similar to distributions, thus
a similarity function, enjoys a wealth of techniques to
compare two distributions. Following [1], we distin-
guish four categories for dissimilarity measures.
First category involves heuristic histogram distances

that are mostly proposed in the image retrieval con-
text, but is also popular in other computer vision tasks.
The Minkowski distance family (Lp) is arguably the
most used heuristic for dissimilarity. L1 computes the
sum of absolute dissimilarity, L2 penalizes the larger
errors more severely, and L∞ as the limiting case mea-
sures the maximal difference. Having the normalized
histograms in hand, Cosine distance (CO) reduces to
inner product of two histograms and indicates the dis-
tance between them as the cosine of angle in between.
The Pearson correlation coefficient (CR) indicates the
linear dependence between random variables.
The second category is derived from non-parametric

test statistics, which examine the hypothesis that two
empirical distributions are generated from the same
true distribution. The Kolmogorov-Smirnov distance
(KS) is defined as maximal discrepancy between two
cumulative distributions, Match distance (MA) equals
the sum of absolute distance between their cumula-
tive distances. Cramer-von Mises statistics (CM) pe-
nalize the discrepancy of two cumulative histograms
quadratically as it sums them. The measures based on
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(a) Original Image (b) Regular HOC (c) Adaptive HOC

(d) Color Point Cloud (e) Regular Binning (6× 6× 6 bins) (f) Adaptive Binning (40 bins)
Figure 1. Regular and adaptive binning to construct HOCs. While the former, assign color points to pre-
defined bins, the latter cluster colors to find the best bin centers for histogramming. The Regular HOC, is
sparse and is sensitive to quantization level of color channels. The Adaptive HOC employs a more compact
representation of the color distribution in the image, and is more intuitive. In this figure the color histograms
are normalized, and the scale of color distributions are altered for better visualization.

cumulative histograms are all sensitive to bin order-
ing. The χ2 statistics (CS) is adopted from Pearson’s
chi-sqaure test statistics and was introduced with an
asymmetric formulation in literature. Later a slight
modification addressed the issue and improved the per-
formance of the metric. Zweng et al. [3] reported
that a bounded version of this function has best perfor-
mance in a tracking task in several color spaces. How-
ever, this function is sensitive to quantization effect
and shape deformation [4]. Another distance in this
category is Bhattacharyya distance (BH), which uses
Bhattacharyya coefficient to measure the dissimilarity
of two distributions.

Third category of distances is inspired from
information-theoretic divergences. The Kullback-
Leibler divergence (KL) measures “how inefficient on
average it would be to code one histogram using the
other as the true distribution for coding”. This mea-
sure is not bounded and is sensitive to empty bins in
the histogram. A symmetric and numerically stable
version of KL-divergence is presented in Jeffrey Diver-
gence (JD).

The final category is composed of distance mea-
sures empowered with cross-bin information. In ap-
plying the bin-to-bin functions presented in the last
three categories, it is often assumed that the domain
of the histograms is aligned. However, in practice,
such an assumption can be violated due to various
factors, such as shape deformation, non-linear lighting
change, and heavy noise. The ground distance, is de-
fined as the amount of difference between elements of
the feature vector. With the aggregation of all ground
distances in a positive-definite symmetric similarity
matrix M, the weighted L2 distance will be trans-

formed into Quadratic distance for color histograms
(QD). An extension to Quadratic distance, introduced
in [4], reduces the effect of large bins. In this hybrid,
Quadratic-Chi distance (QC), the normalization power
of chi-square is utilized along with cross-bin relation-
ship presented by quadratic distance. Another mem-
ber of this category is Diffusion distance (DF ), which
models the problem as a temperature field and con-
siders the diffusion process on it [5]. Earth Movers
Distance [6] is another family member that models the
histogram distance with different bin sizes and bin cen-
troids as a transportation problem (EM). Many ap-
proaches try to improve the speed of this method. For
example EMD − L1 exploits the structure of L1 dis-

tance and ̂EMD [7] used a graph theoretic approach
with thresholded ground distance to linearize the com-
putational complexity.

2.3 Model Update

The tracking task, involves lots of dynamics in the
subject ranging from rigid and non-rigid transforma-
tions to abrupt changes in pose, motion, illumination,
camera parameters, temporal clutter, noise and occlu-
sion. Robust trackers compensate for these changes
by updating their model across the time, to keep the
model close to the designated subject. Several model
update (MU) approaches are popular in the literature.
The simplest approach is to average all of the obser-

vations from the beginning of the sequence. Although
updates the model for new changes, this method lacks
enough flexibility to accommodate drastic changes in
the model. In the second method a leaky memory
scheme is employed, i.e., all of the observations con-
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tribute to the template model based on their recent-
ness. The result of this approach is over-smoothed and
may lose the clarity after a while. The third approach
uses an extra buffer to update the model. Essentially
an extension of the leaky memory model, this method
updates the model with small forgetting rate for every
observation. Then after a certain number of intervals,
the model is updated with a larger forgetting factor
that helps the removal of the remainders of initial ob-
servations if not useful anymore. Finally, the forth
approach is to use only the recent observations. For
this a queue of a fixed size is utilized and each new
observation is enqueued in it. The template in each
frame is the average of all models in the queue.

3 Gridding for HOC: Divide and Conquer

This section elaborates the proposed feature.

3.1 Challenges for Color Histogram

It has been stated in the literature that tracking us-
ing region based descriptors take two extremes: blob-
based trackers and pixel-wise template trackers. Gen-
erally a blob-based tracker accumulates less informa-
tion about the target, since it discards all its spatial
information. A middle level to this spectrum has been
established by the use of kernel histogram methods.
While the initial method based on mean shift formula-
tion [2] share more similarities to blob trackers, some
modifications (such as those in [8]) drift them more
toward the template tracker end of spectrum.
However, even with adaptive binning based on the

overall distribution of all images in a tracking sequence,
often for specific patches of image only a small fraction
of the bins in a histogram contain significant informa-
tion. Fine quantization for the histogram as a solution
is highly inefficient. On the other hand for an image
characterized by many color details, a coarse binning
for histogram is not adequate. Traditional histograms
as fixed-size structures can hardly balance efficiency
and expressiveness. Several methods have been pro-
posed to enhance the color representation, including
variable-size histograms called signatures [1], embed-
ding color spatial relations into color corellograms [9]
and expansion of histogram with higher order spatial
moment called spatiograms [10]. These approaches are
changing the nature of color histograms thus reducing
its robustness to rotation, deformations and illumina-
tion changes while improving the performance in the
normal condition.

3.2 Proposed Method

Here we introduce the idea of gridding, which while
preserving the very nature of color histograms, ad-
dresses the above-mentioned issues. The intuition be-
hind this method is that with breaking a big block of
data into smaller chunks, processing them and aggre-
gating them again, the data become more tractable
and is augmented with the underlying process. The
agglomeration scheme in turn grants desired proper-
ties to the result. Specifically in this case, we break
the input image, into spatially-regular grid segments,
calculate the histogram of color to each of sub-images
and combine obtained histograms to make one final
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Figure 2. Gridding to enhance HOC. The Image
and its background mask (if available), is divided
into spatially-regular grid. Then, a HOC is con-
structed for each cell, and the weight of cell (i.e.,
ratio of foreground to all pixels) is calculated. Fi-
nally, these histograms are agglomerated to pro-
duce a HOC with the similar length of each of
cell HOCs.

histogram. We propose two agglomeration techniques:
(i) averaging in which the final HOC is smoothed to
avoid a few bins overload the total histogram if placed
only in a part of image; (ii) linear combination in which
each grid cell is analyzed and given an importance co-
efficient and the resulting histogram is the linear com-
bination of grid histograms weighted by these coeffi-
cients. We call the former method grid-driven average
HOC (Ga) which requires no additional information.
In case of the latter, grid-driven weighted HOC (Gw),
we define the importance of the grid cell proportional
as the ratio of foreground pixels to all pixels in the
grid cell. This requires background subtraction, which
is not feasible in many tasks, and the importance crite-
ria can be arbitrary function which assigns a weight to
the grid cells (Figure 2). The procedure of constructing
Ga and Gw is elaborated in Algorithm 1. The binning
strategy is arbitrary in line 4 of this algorithm.
It is important to contrast our method with spatial

pyramid matching [11]. This method performs pyra-
mid matching [12] in image space and use clustering in
feature space. It concatenates the results of different
levels of pyramid, which yield a large sparse feature
vector. This holistic method is suitable for scene clas-
sification. It is not suitable for tracking task in which
background clutter challenges the tracker and object
transformations should be handled. Also exponentially
shrinking cells of this method, increase the chance of
outlier problem in the histogram. In contrast, our pro-
posed feature manages object transformations by av-
eraging and accounts for background.

4 Evaluation

In this paper we investigate the performance of dif-
ferent similarity measures under various histogram-
ming paradigms, and show the efficiency of the pro-
posed gridding method to enhance almost all of them.
Another experiment is dedicated to examine the com-
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Algorithm 1: Constructing Grid-driven HOC

input : Gridding granularity n, Image Patch I
output: Grid-driven HOCs Ga and Gw

1 B ← Calculate Image Background Mask
2 Ii,j ← Divide I into n× n cells
3 Bi,j ← Divide B into n× n cells
4 C ← Calculate Histogram Centers
5 αi,j ← Calculate ratio of foreground pixels to all
in Bi,j

6 hi,j ← Calculate HOC for Ii,j using C

7 Ga ← 1
n2

∑(n,n)
(i,j)=(1,1) hi,j

8 Gw ← 1
n2

∑(n,n)
(i,j)=(1,1) αi,jhi,j

patibility of histogramming method with similarity
measure and model update. All of the sequences are
in RGB color space and for all experiment related to
a histogramming schemes, the bins are preserved the
same. Following the style of [3], we used 50 consec-
utive frames from S2.L1.12-34.View001 sequence of
PETS 2009 dataset to simulate a tracking task. The
three pedestrians present in the sequence are repre-
sented with a bounding box, manually pre-segmented
and a background mask is prepared to block the effect
of other factors on the evaluations [3].

Table 1. Combinations of 〈HOC,DIST 〉 for
tracking robustness, row best is in bold, column
best is underlined, and best value is shaded (A:
adaptive, R: regular))

HOC
Similarity Measures (%)

L2 CR CS BH KL DF KS CM QC EM

R 69.7 62.6 70.4 72.1 86.2 71.0 69.6 48.8 64.2 67.8

A 72.6 72.0 74.5 72.9 88.2 72.4 66.8 54.5 64.0 66.4

R Ga(2×2) 70.3 63.5 71.0 72.4 86.4 71.4 70.1 49.8 65.9 68.0

A Ga(2×2) 73.0 72.9 74.5 73.1 88.9 73.3 71.1 54.5 65.6 66.6

R Ga(3×3) 70.0 63.3 71.0 71.9 86.2 70.9 69.9 49.6 65.7 67.5

A Ga(3×3) 72.7 72.0 75.4 72.5 90.4 73.4 69.9 51.9 65.3 66.2

R Ga(5×5) 69.5 62.8 70.9 71.7 86.0 70.7 69.3 48.4 64.9 66.9

A Ga(5×5) 72.9 72.1 73.4 71.8 88.7 72.4 68.4 54.2 64.6 66.4

R Gw(2×2) 69.9 62.7 70.5 70.9 86.5 69.8 69.3 51.1 63.8 65.0

A Gw(2×2) 72.6 73.2 75.4 72.1 88.8 71.9 64.9 40.3 64.0 63.7

R Gw(3×3) 70.0 63.3 71.0 71.9 86.2 70.9 69.9 49.6 65.7 67.5

A Gw(3×3) 73.6 74.6 76.2 73.0 90.8 73.6 72.7 60.9 65.4 66.2

R Gw(5×5) 69.5 62.8 70.9 71.7 86.0 70.7 69.3 48.4 64.9 66.9

A Gw(5×5) 72.8 72.1 74.5 72.5 88.9 73.4 69.4 61.1 64.6 66.1

4.1 Experiment I

In the first experiment, different combinations of his-
togramming method and similarity measures are exam-
ined on the sequence. The similarity of each person in
each frame to that of last frame, intra-similarity, is cal-
culated throughout all of the sequence. Furthermore,
the mutual similarity of each person to other subjects
in each frame, the inter-similarity, is calculated for
each frame as well. The inter- and intra-similarity val-
ues are obtained from aij = 1− (dij ÷ dmax) in which
dij is the distance between bounding boxes i and j, and
dmax is the maximum of all distances measured for this
dissimilarity function (e.g. CS). Intuitively, a similar-
ity function should maximize the intra-similarity, while
minimizing inter-similarity. To facilitate comparison

between different combinations of 〈HOC,DIST 〉, we
introduce a score S =

√
α(1− β) in which α is the av-

erage of all intra similarity values and β is the average
of all inter-similarity values. Higher S values (values
closer to one), indicates a better combination in dis-
tinguishing target and non-target bounding boxes.
Table 1 gathers a comprehensive list of all com-

binations of histogramming methods and similarity
measure combinations. 1In this table, two types of
HOC, Regular with 5×5×5 bins and Adaptive with
40 bins, two types of gridding with different grid sizes
(Gan×n and Gwn×n), and 16 similarity measures are
compared. For the cross-bin similarities, a matrix
M is constructed for both regular and adaptive his-
togramming methods based on CIEDE2000 color dis-
tance and is shared between all measures. The project
code can be found at https://github.com/meshgi/
Histogram_of_Color_Advancements and EM dis-

tance is based on ̂EMD [7]. From Table 1 it is
apparent that KL-divergence provides the best score
for tracking which means the object has higher intra-
similarity throughout the sequence, while the rest
of the objects have large distance to that. It is
also evident that gridding-enhanced histograms have
better performance than the normal condition. In
this particular example the 3×3 grid-driven weighted
color histogram outperforms other schemes for most
of the possible similarity measures, especially with
KL-divergence that achieves the best performance of
S = 90.83%.

Many other patterns are evident in this table, in-
teresting for further investigation. For instance, it is
apparent that the performance of the grid-based av-
erage HOC along with cross-bin similarity measures
is better than the other distances. On the other hand
the statistic test distances get along with weighted ver-
sion of gridding. This is intuitive as the weighted grid-
ding emphasizes the statistics in each sub-frame pro-
portional to their significance in the total result. On
the other hand, cross-bin measures emphasize on the
distance of the colors and the amount of correspondent
bin-to-bin difference which is smoothed by the process
of averaging. Interestingly, QC as a bridge between
these two families bends in favor of averaging. More-
over, there is an optimized grid size for the sequence
in which most of the similarity measures showed the
best performance. This size is object-specific and in
our case, for the pedestrians a 3×3 grid works well
(left/middle/right + head/torso/legs) despite the out-
of-plane rotation of the subjects in the sequence.
In addition to our proposed features, we examined

the performance of pyramid matching [12] and spatial
pyramid matching [11] in this experiment. The former
achieved S = 79.7% while the latter, which is designed
as a holistic feature for scene understanding, obtained
only S = 51.3%.

4.2 Experiment II

In a strive to find the best 〈HOC,DIST,MU〉 com-
bination, we attempt another experiment in which all
new bounding boxes are matched to a template. This

1Due to space limitation only 10 of the measures are pre-
sented, the rest are available in the author webpage: http:

//ishiilab.jp/member/meshgi-k/r-tracking.html
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experiment is particularly useful to evaluate the per-
formance of this combination in top-down trackers. In
this experiment the target in the first frame acts as an
initialization for the template, which is updated in the
successive frames using surveyed methods. All of the
similarity values for each tuple of 〈HOC,DIST,MU〉
are averaged to make a final score. In this implemen-
tation, the forgetting factor for leaky memory is set to
0.1, the queue size for storing the latest templates are
set to 5, and the forgetting factor for the second layer
of buffer is set to 0.4. Table 2 contains the best result
of model update schemes.
Interestingly, all of similarity measures, except CO,

took their maximum value from last 5 frame MU
scheme. This indicates the role of incorporating recent
changes into the model. It also suggests that higher
forgetting rates for the leaky memory schemes may be
beneficial in this scenario. It is also noteworthy that
all of the test cases prefer a model update to no up-
date case, which clarifies the role of model update in
dynamics of tracking. In Table 2 it is clear that CM
has the best template matching performance, but as
it is inferred from Table 1 it does not have adequate
inter-object similarity rejection and thus is not a good
candidate for the histogram-based template matching.
KL-divergence, on the other hand, has on average 4%
less template matching performance under model up-
date case. Yet, it enjoys an exponential punishment
method for other objects, which makes it as an excel-
lent choice among all the others.

Table 2. Combinations of 〈HOC,DIST,MU〉 for
best template matching performance, row best
is in bold, column best is underlined, and best
value is shaded (A: adaptive, R: regular))

HOC
Similarity Measures (%)

L2 CR CS BH KL DF KS CM QC EM

R 86.0 95.5 93.4 82.8 93.2 84.5 86.4 96.8 90.8 80.4

A 86.5 94.5 92.9 83.1 92.8 83.7 88.8 96.4 90.4 80.5

R Ga(2×2) 85.9 95.4 93.2 82.7 93.1 84.3 86.3 96.7 90.6 80.4

A Ga(2×2) 86.0 94.4 93.0 83.2 92.8 83.8 84.1 95.2 90.2 80.7

R Ga(3×3) 86.0 95.4 93.2 82.8 93.1 84.5 86.4 96.8 90.7 80.6

A Ga(3×3) 86.7 94.4 92.6 82.9 92.4 83.5 88.6 96.8 90.3 80.2

R Ga(5×5) 86.1 95.5 93.2 82.8 93.0 84.5 86.7 96.8 90.9 80.7

A Ga(5×5) 87.1 94.6 93.0 83.1 92.8 84.1 88.0 96.9 90.3 80.4

R Gw(2×2) 84.1 95.0 92.5 81.8 92.3 83.4 84.4 96.2 89.8 80.6

A Gw(2×2) 84.0 93.4 91.9 82.2 91.7 82.6 85.8 96.2 89.4 81.2

R Gw(3×3) 86.0 95.4 93.2 82.8 93.1 84.5 86.4 96.8 90.7 80.6

A Gw(3×3) 85.6 94.3 92.9 83.6 92.8 83.4 88.4 96.8 90.4 80.8

R Gw(5×5) 86.1 95.5 93.2 82.8 93.0 84.5 86.7 96.8 90.9 80.7

A Gw(5×5) 86.5 94.4 92.9 83.3 92.8 83.6 88.5 96.1 90.5 80.6

5 Conclusion

In this paper, A new tool to improve visual tracking
accuracy using color cues is introduced. The idea in-
volves decomposing a bounding box into a regular grid,
in order to incorporate more spatial information and
embed local salient color details into the histogram.
Two gridding schemes are also proposed to accommo-
date different requirements, when the background data
is/is not available. Then a comprehensive study over
the existing (dis)similarity measures is conducted and
many ideas from other computer vision realms such as
image retrieval and texture analysis are brought into
object tracking.

Using two simulation experiments, we first study
the performance of (dis)similarity functions in finding
relevant target using color histogram, while discard-
ing other objects to successfully track the designated
object. The results signify the usefulness of gridding
to improve the tracking performance. It showed that
almost any combination of histograms and similarity
measures are boosted by gridding. Based on the results
it is advisable to use grid-based weighted HOC when
the background data is available, but the other version
is also superior to normal HOC in most of the cases.
To employ these features in other trackers, the degree
of gridding, n can be calculated using cross-validation.

In the second experiment we emulate a tracking sce-
nario and illustrate the compatibility of different tem-
plate update schemes for various dissimilarity mea-
sures. It has been found that while all model updates
surveyed in this paper improves the performance of
template matching, none of them is completely suit-
able for proposed gridding schemes. Also the results
revealed that, calculating template as the average of
the last 5 observations, outperformed other methods.
In future, we plan to extend the scope of study to

other color spaces, irregular grids, optimal griddings,
and uncontrolled tracking scenarios.
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