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Abstract

Injury to the Anterior Cruciate Ligament (ACL)
can lead to inadequate movement during sport and
daily life activities, leading to increased risk of re-
injury or dropouts from any form of physical activ-
ity. Thus, it is important to detect such movement
problems so that they can be prevented through fo-
cused rehabilitation programmes. This paper proposes
a method to seek out differences of movement patterns
between an ACL reconstructed group and a healthy con-
trol group. Principal Component Analysis (PCA) is
applied to movement data in a training dataset. Then,
Cohen’s d is used to select such principle components
(PCs) that can efficiently distinguish movement pat-
terns of ACL reconstructed patients from healthy in-
dividuals. In our experiment, 10 subjects are used to
evaluate the proposed method. Each subject contains
nine observed variables of movement information. The
proposed method can achieve a promising performance
of above 90% accuracy to discriminating motion pat-
terns of ACL reconstructed patients from healthy indi-
viduals. Also, vector loads of the selected PCs are plot-
ted and visualized. Four variables significantly discrim-
inated the ACL reconstructed group from the healthy
control group, which are: 1) ground reaction force, 2)
hip joint moment, 3) knee joint moment, and 3) ankle
joint moment. Some of which have been identified as
key predictors of ACL injury risk.

1 Introduction

Reconstruction of the Anterior Cruciate Ligament
(ACL) after rupture has an impact on sporting ac-
tivities, with few athletes returning to their previous
level of play and many suffering further injury [1]. Un-
derstanding how the motion patterns of ACL recon-
structed patients are different from healthy individu-
als may help explain these issues. This can be com-
plicated since the motion patterns can be described
using a large amount of variables. This paper is the
first to apply machine leaning techniques to address
such problem. However, there are some related re-
search works [2][3] which focus on the relating problem
domain of discriminating Osteoarthritis (OA) patients
from healthy participants.

In this paper, to help reduce the complexity of
the motion patterns, Principal Component Analysis
(PCA) was applied. It reduces the data dimensionality,
and more importantly, PCA can help seek out discrim-
inant components from movement patterns in order to
differentiate between the motion patterns of ACL re-
constructed and healthy individuals. Then, such dis-
criminant components are filtered over again by using
Cohen’s d [4]. Later, vector loads of the selected dis-
criminant components are visualized to explain how
motion patterns of the ACL reconstructed group are
different from motion patterns of the healthy control
group.
The motion patterns used in this paper were col-

lected from 10 subjects (i.e. 5 subjects in the ACL re-
constructed group and 5 subjects in the healthy control
group) by using the 3D motion capture/camera system
in the biomechanical laboratory, School of Sport and
Exercise Science, Liverpool John Moores University.
Each subject’s movement was tracked by using reflec-
tive markers. The tracked positions of such markers
were recorded by a 3D camera system and this com-
bined with ground reaction forces were used to calcu-
late 9 joint loading characteristics in a dynamic change
of direction, including: 1) ground reaction force, 2) hip
joint moment, 3) knee joint moment, 4) ankle joint
moment, 5) hip angle, 6) knee angle, 7) ankle an-
gle, 8) center of mass, and 9) center of mass veloc-
ity. The joint moment represents the torque acting
around a joint at an instance time during a gait cy-
cle [5]. They were used in our study. The aim was to
see if PCA could discriminate between the two subject
groups based on these variables.
The rest of this paper is organized as follows. The

method proposed for discriminating motion patterns of
ACL reconstructed patients from healthy individuals is
explained in section 2. Experimental results are shown
in section 3, and conclusions are drawn in section 4.

2 The Proposed Method

Figure 1 shows the framework of the proposed
method. In the training process, given two sets of
movement data SA = {Ai}NA

i=1 and SB = {Bi}NB
i=1

where Ai is the sample i in the healthy control group,
Bi is the sample i in the ACL reconstructed group, and
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Figure 1. Framework of the proposed method.

NA and NB are total numbers of samples in S1 and S2

respectively, there are three main steps.
First, Principal Component Analysis (PCA) [6][7] is

applied to acquire an optimized version of the data by
reducing its dimension and finding its dominant vari-
ables. Given Ai = {ai,j}Mj=1 and Bi = {bi,j}Mj=1, where
ai,j is the element j of Ai, bi,j is the element j of Bi,
and M is the dimension of each movement data, the
matrix U is constructed as below.

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,1 a1,2 ... a1,M−1 a1,M
a2,1 a2,2 ... a2,M−1 a2,M

.

.

.
aNA,1 aNA,2 ... aNA,M−1 aNA,M

b1,1 b1,2 ... b1,M−1 b1,M
b2,1 b2,2 ... b2,M−1 b2,M

.

.

.
bNB ,1 bNB ,2 ... bNB ,M−1 bNB ,M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N×M

(1)
where N = NA + NB . Then, each element in U is
standardized [8] in a column manner as:

Ũ = {ui,j − μj

σj
}N×M (2)

where ui,j is the element in U at the row i and column
j, and μj and σj are the mean and standard deviation
of elements in the column j of U , respectively.

μj =

∑N
i=1 ui,j

N

σj =

√∑N
i=1 (ui,j − μj)2

N

(3)

Then, the covariance matrix (C) of the training
movement data is constructed as in the equation (4).

C =
ŨT × Ũ

N
(4)

where ŨT is the transpose of the matrix Ũ . A process
of eigen-decomposition is applied to the matrix C to
generate eigenvectors and their corresponding eigen-
values. To reduce the data dimension, k eigenvectors
corresponding to the k largest eigenvalues are selected.
Usually, k is much less than M . In this paper, k is
selected where the top k eigenvectors can cover about
99% of the variation of the whole training dataset, as
shown in the equation (5).

k = argmin
1≤k≤M

∑k
i=1 |vi|∑M
i=1 |vi|

> 0.99 (5)

where vi is the eigenvalue which corresponds to the
eigenvector i. In this paper, the k selected eigenvectors
are called Principal Components (PCs).
Second, Cohen’s d [4][9] is applied to filter PCs by

analyzing their discriminabilities i.e. Cohen’s d values.
PCs with high Cohen’s d values are finally selected.
The Cohen’s d value (di) for the ith PC (PCi) is cal-
culated as below.

di =
μ̃A,i − μ̃B,i√

σ̃2
A,i+σ̃2

B,i

2

(6)

where μ̃A,i and μ̃B,i are means of projected values by
PCi of training samples in the healthy control group
and the ACL reconstructed group respectively, and
σ̃A,i and σ̃B,i are standard deviations of projected val-
ues by PCi of training samples in the healthy control
group and the ACL reconstructed group respectively.
These calculations are shown in the equation (7).

μ̃A,i =

∑NA

j=1 pj

NA

μ̃B,i =

∑NB

j=1 qj

NB

σ̃A,i =

√∑NA

j=1 (pj − μ̃A,i)2

NA

σ̃B,i =

√∑NB

j=1 (qj − μ̃B,i)2

NB

(7)

where pj and qj are projected values by PCi of training
samples j in the healthy control group and the ACL
reconstructed group respectively, as below.

pj = Ũj × PCi

qj = Ũj+NA
× PCi

(8)

where Ũj is the row j of Ũ which corresponds to the
standardized training sample j in the healthy control

group, and Ũj+NA
is the row j + NA of Ũ which cor-

responds to the standardized training sample j in the
ACL reconstructed group.
Third, assume that there are l PCs (e =

{e1, e2, ..., el}) passing the Cohen’s d filtering process,
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Figure 2. Vector loads of the principal component for 9 joint loading characteristics in a dynamic change
of direction. (a) Ground reaction force. (b) Hip joint moment. (c) Knee joint moment. (d) Ankle joint
moment. (e) Hip angle. (f) Knee angle. (g) Ankle angle. (h) Center of mass. (i) Center of mass velocity.

the training samples are then projected into this fea-
ture space as below.

P = Ũ × eT (9)

Thus, the representative features for the healthy con-
trol group (fA) and the ACL reconstructed group (fB)
are calculated as below.

fA =

NA∑
i=1

Pi

fB =

N∑
i=NA+1

Pi

(10)

In the testing process, given a sample of movement
data G = {gj}Mj=1, it is first standardized based on
the calculated mean and standard deviation from the
equation (3).

G̃ = {gj − μj

σj
}Mj=1 (11)

Then, it is projected into the trained feature space,
as below.

Ĝ = G̃× eT (12)

Finally, the class (c) of this testing sample is deter-
mined as in the following equation.

c = argmin
A,B

(s(fA, Ĝ), s(fB , Ĝ)) (13)

where c is either A (i.e. healthy individuals) or B (i.e.
ACL reconstructed patients), and s is a chosen sim-
ilarity measurement function e.g. Euclidean distance
[10].

3 Experiment

The human motion patterns were collected from
10 different subjects by using the reflective markers
through the 3D camera system and the ground reac-
tion force on the force plate, where 5 subjects were in
the ACL reconstructed group and the other 5 subjects
were in the healthy control group. In our experiment, 5
trials were recorded for each subject which was asked to
perform a side-cutting task. In each trial, the motion
data consists of 9 variables (ground reaction force, hip
joint moment, knee joint moment, ankle joint moment,
hip angle, knee angle, ankle angle, center of mass, and
center of mass velocity) in 101 normalized time points
with 3 degrees of freedom (x, y and z directions). Thus,
the original dimension of the data is 9×101×3 = 2727.

This dataset is divided into 2 parts as: 1) 2 subjects
in the ACL reconstructed group and 2 subjects in the
healthy control group are used in the training process,
and 2) the other 3 subjects in the ACL reconstructed
group and the other 3 subjects in the healthy control
group are used in the testing process.
In our training phase, 30 principal components were

found to cover 99% of the variation of the whole train-
ing dataset. The maximum Cohen’s d value was 1.25,
corresponding to the 5th principal component which
represented about 7.96% of the variation, as shown in
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Table 1. The top 30 principal components (PCs)
sorted by their eigenvalues, with their corre-
sponding Cohen’s d values (column 2) and per-
centages representing the variation on the train-
ing dataset (column 3).

PCs Cohen’s d values % of the variation
1 -0.90 18.61
2 0.42 15.23
3 0.41 13.94
4 0.31 11.60
5 1.25 7.96
6 -0.72 5.88
7 0.17 4.92
8 0.00 3.85
9 0.67 3.30
10 0.59 2.61
11 0.01 1.67
12 -0.15 1.28
13 0.18 1.18
14 0.04 0.99
15 0.10 0.80
16 -0.07 0.74
17 0.01 0.67
18 -0.12 0.58
19 -0.11 0.46
20 0.08 0.44
21 0.28 0.41
22 -0.08 0.35
23 0.33 0.30
24 -0.07 0.27
25 -0.05 0.23
26 -0.08 0.19
27 0.11 0.18
28 -0.26 0.16
29 -0.04 0.12
30 0.04 0.11

Table 1. The accuracy of the classification between
the ACL reconstructed group and the healthy control
group was about 90%.

In the column 3 of Table 1, a percentage represent-
ing the variation on the training dataset of PC i was
calculated by dividing the absolute value of the eigen-
value of the PC i by the sum of the absolute values of
all eigenvalues then multiplied by 100.

Then, vector loads of the 5th PC for all 9 variables
were visualized in Figure 2. They are plotted to ex-
plain which joint loading characteristics are different
between the ACL reconstructed group and the healthy
control group. The larger value of the vector load rep-
resents the higher impact on such motion patterns dis-
crimination. The y-axis represents the vector loads of
the principal component, while the x-axis represents
the 101 normalized time points. Based on the vec-
tor loads of the 5th PC, the dominant variables which
discriminated between the ACL reconstructed group
and the healthy control group were ground reaction
force, hip joint moment, knee joint moment, and ankle
joint moment. Among the three degrees of freedom (x,
y, z), x-component was dominant in the ground reac-
tion force, and z-component was dominant in the hip
joint moment, the knee joint moment and the ankle
joint moment, to discriminate between the two subject
groups.

4 Conclusion

It is difficult to identify the differences in motion pat-
terns between ACL reconstructed and healthy individ-
uals from all data because of the large variation among
different subjects in the same group. This study has
shown a reduced number of variables to identify such
differences under the PCA-projection space, allowing
for a more focused evaluation of motion pattern differ-
ences. Further work will need to verify whether these
reduced dimensions can be of particular importance
to biomechanists and ultimately clinicians who try to
help ACL reconstructed patients return to their sport
more effectively. Increased number of subjects might
give more power. The benefits that could be achieved
are 1) the constructed PC-based model can be used to
predict whether a newly given gait pattern (i.e. the
9 joint loading characteristics) belong to the ACL re-
constructed group or the healthy control group; and 2)
the carefully analysis of the vector loads can be used
to indicate specific problems of the ACL reconstructed
patients.
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