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Abstract

The rise of Unmanned Aerial Vehicles for surveying
and sensing tasks have created new challenges for quick
calibration of sensing systems, which we feel is a criti-
cal issue. In this context, calibration is performed often
and needs to be achieved as quickly as possible. An ap-
proach with minimal user-interaction, which preserves
sensing accuracy would be ideal. We propose a version
of Tsai’s camera calibration with an improved distor-
tion model and two non-linear optimization phases to
calibrate our UAV equipped with a stereo-camera sys-
tem. We trialled our proposed calibration approach
against three known reconstruction pipelines: an un-
calibrated pipeline, a pipeline calibrated using Zhang’s
approach and a pipeline calibrated using Tsai’s origi-
nal approach. Our findings indicate that our approach
has competitive accuracy, while requiring far less user-
interaction than Zhang’s approach.

1 Introduction

Traditionally, remote controlled quadcopter drones
are armed with a single camera system. Thus, in terms
of image processing, camera pose needs to be estimated
based on feature point matching or optic flow across
image frames. Unfortunately, since single camera sys-
tems have no notion of depth, single image processing
algorithms need to make many assumptions that of-
ten lead to errors. We decided to arm our quadcopter
drone with a stereo camera system instead.
With a stereo system, comes the need to calibrate

cameras. In our research, this calibration needs to hap-
pen often, due to the volatile nature of drone flights
and the frequent exchange of camera rigs. Zhang’s cal-
ibration is an obvious first choice due to it’s wide ac-
cessibility (the MATLAB toolkit for example) and it’s
robust performance. In practice, we found Zhang’s ap-
proach problematic due to the image acquisition phase.
Zhang calibration requires 15 or more images covering
the entire field of view (FOV). Due to outdoor con-
straints, this acquisition needs to be rushed (limited
battery life), resulting in blurred images, or insufficient
numbers of images that cover only a small portion of
the FOV.
Tsai’s calibration is an attractive alternative to

Zhang’s approach, since it only requires a single im-
age per camera. Also, as neither the cameras nor the
calibration object move during the image acquisition
phase, issues such as synchronization and blur are no
longer problems.
Therefore we address of accuracy of Tsai’s calibra-

tion, particularly in the context of 3D reconstruction
for a UAV. Based on the observation that the tra-
ditional Tsai approach is far less optimized than the

Zhang approach, we pose the question: Given further
optimization, are we able to improve the performance
of Tsai calibration?
Consequently, we propose a three stage optimized

calibration algorithm based on Tsai’s approach: We
first use the traditional Tsai linear equations to acquire
a basic best-fit linear calibration model. This is then
used to initialize a second phase, where the Levenberg-
Marquardt algorithm optimizes 17 calibration param-
eters, including an upgraded distortion model, to find
a second best-fit calibration model. These calibration
parameters are then inputs to initialize yet another
Levenberg-Marquardt optimization to refine a model
that describes the relationship between left and right
images of our stereo camera system. This final model
can then, in turn, be used as the basis for rectification
of stereo image pairs.
In the next section, we briefly review related liter-

ature. In section 3, we describe some of the equip-
ment that was used during our experimentation. Af-
ter that, section 4 covers the 3D pipelines featured in
this paper. Next, section 5 introduces our massively
optimized Tsai algorithm. Finally, we close with ex-
perimental results and a discussion of conclusions in
section 6 and section 7 respectively.

2 Literary Review

Drones or unmanned aerial vehicles (UAV), tradi-
tionally only have a single camera attached to them.
It is for this reason that many articles [7] focus on a
single camera approach for these vehicles. Many of
these approaches are very similar to the uncalibrated
pipeline presented in this work.
As calibrated rectification tends to outperform un-

calibrated rectification, there is a lot of research ex-
ploring ways to reduce the difference between the two
approaches [2].
Of the calibrated approaches, two important ap-

proaches stand out. Tsai’s calibration [10] was one
of the top calibration algorithms in 1987, and contin-
ued to dominate over a number of years [8]. Later,
when Zhang’s calibration [11] was published, several
studies were performed to compare the these two algo-
rithms [9]. Typically these studies found Zhang’s ap-
proach to be more complete and more accurate than
Tsai’s approach. However, in 2014, Wei Li et al. [4]
found these differences not to be that significant in the
context of 3D reconstruction.

3 Equipment used

The equipment used in the experiments within this
paper is shown in Fig. 1.
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Figure 1. Zhang calibration Object (Top Left),
GoPro HERO3+ Cameras (Top Right), Phantom
quadcopter (Bottom Middle)

Figure 2. Calibrated Stereo Vision Pipeline

The first item is the Tsai calibration object. Our
calibration object was constructed out of perspex (top
left of Fig. 1). A checkerboard pattern was attached to
each of the two surfaces, to facilitate automatic point
extraction [4].
The UAV featured is the DJI Phantom quadcopter

(bottom middle of Fig. 1). It is capable of lifting
a payload of 300 grams. It’s top flying speed is 10
m.s−1. The UAV has been upgraded with carbon fibre
propellers and propeller guards to improve it’s perfor-
mance and robustness.
The payload of our UAV is a stereo box housing

twin GoPro HERO3+ cameras (top right of Fig.. 1).
Our motivation for choosing these cameras for our ex-
periments is that they are relatively cheap, robust to
crashes and give good quality images. However, it
should be noted that GoPro HERO3+ cameras possess
a significant amount of barrel distortion which must be
accounted for.

4 Pipelines

4.1 A calibration 3D reconstruction pipeline

The calibrated pipeline, is shown in Fig. 2. The steps
of the pipeline are exactly the same for both calibration
techniques.
The first step of the process is image acquisition.

The goal of the image acquisition step is to acquire

Figure 3. Uncalibrated Stereo Vision Pipeline

data to drive the calibration process. During Tsai’s
calibration, only a single image is required for each
camera. That image must be of a calibration object
with two orthogonal planes such as the one in Fig. 1.
Zhang’s calibration requires 15 or more images from
each camera. The Zhang’s calibration object needs to
be planar, and is orientated in different ways for each
image, so that the entire body of images collectively
cover camera’s field of view.
Once the images have been acquired, feature points

need to be extracted from those images. In our exper-
iments, we attach chessboard patterns to our calibra-
tion objects so that we are able use the approach of
Arca et al. [1] for feature point detection and Wei’s [4]
approach for feature point extraction.
The extracted set of feature points forms the input to

the calibration algorithm. We used OpenCV’s version
of Zhang’s calibration, and wrote our own version of
Tsai’s calibration.
Both calibration algorithms produce a model of ra-

dial distortion within the image. In both cases, we
applied this model, along with bilinear interpolation,
to perform distortion removal from images.
Next, we rectified stereo pairs using the approach of

Fusiello et al. [3].
Following rectification is stereo matching. We used

the guided stereo dynamic programming algorithm de-
veloped by Nguyen et al [6] for improved accuracy at a
reasonable processing cost. This is a hybrid algorithm
that uses a sub-sampled graph-cut stereo algorithm to
guide a dynamic programming stereo algorithm.
Stereo matching produces a disparity map that we

use, along with the implementation of Nguyen et al [6],
to generate a 3D reconstruction.

4.2 A 3D reconstruction pipeline without cali-
bration

Our uncalibrated 3D reconstruction pipeline rectifies
images based on a sparse set of matching feature points
and epipolar geometry. This pipeline is illustrated in
Fig. 3.
The first step in the pipeline is distortion removal, as

GoPro HERO3+ cameras have large barrel distortion.
In order to remove this distortion, we needed to derive
a distortion model. We began by manually locating an
image within the sequence of images that contains a
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known straight line. Edge detection is used to extract
the pixels which belong to the line. We approximated
the level of line curvature by determining the aggre-
gated deviation between the line pixels and the line
of best-fit. Finally, we used the first order radial dis-
tortion model (Eq. 1) and the bisection minimization
algorithm to refine κ1. This approach may be applied
to each camera in the camera system, and as distor-
tion should not vary across images in a sequence for a
fixed focal length, the resultant model may be used to
remove distortion from an entire sequence, including
those frames that do not contain any known straight
lines.

xu = xd(1 + κ1r
2), yu = yd(1 + κ1r

2) (1)

After the removal of distortion, the next step is to
find features within the scene. We used OpenCV’s im-
plementation of SIFT. Once feature points have been
discovered, they need to be matched across images. We
used OpenCV’s BFMatcher to perform this function.
The 3 by 3 fundamental matrix maps epipolar lines

to points across stereo pairs. To calculate the fun-
damental matrix, we chose to use the random sam-
ple consensus (RANSAC) algorithm to reduce sensi-
tivity to outliers. Once the fundamental matrix was
acquired, we performed an uncalibrated rectification
as per OpenCV.
After rectification, the remaining steps are the same

as the ones in the calibrated pipeline. See section 4.1
for details.

5 Optimized Tsai

The traditional Tsai approach is a two-step ap-
proach. Firstly, image acquisition mechanics are de-
scribed using a very simple linear pin-hole camera.
Next, the non-linear distortion model described by
Eq. 1 is added to the model. An iterative non-linear
solver such as the Levenberg-Marguardt algorithm is
then used to optimize and refine the focal length f ,
the z-component of translation Tz, and the first order
radial distortion κ1.

5.1 An enhanced distortion model

The first modification we made to the standard Tsai
algorithm was an extension of the distortion model.
Our motivation for doing this was the notion that a
more sophisticated model of distortion could lend more
flexibility to the camera model, allowing for a closer
fit to the actual mechanics of the image acquisition
process. To achieve this, we modified our Tsai imple-
mentation to use Zhang’s distortion model, including
principle point decentering.

xd = xu(1 + κ1r
2 + κ2r

4 + κ3r
6)

+2P1xuyu + P2(r
2 + 2x2

u)

yd = yu(1 + κ1r
2 + κ2r

4 + κ3r
6)

+P1(r
2 + 2y2u) + 2P2xuyu

(2)

The Eq. 2 depicts the Zhang distortion model. The
distorted point (xd, yd) is mapped to the undistorted
point (xu, yd). Coefficients κ1, κ2, κ3 are the first, sec-
ond and third order radial distortion coefficients, while

P1 and P2 are the first and second tangential distortion
coefficients.The variable r is the radial displacement of
the undistorted point from the principle point.

5.1.1 First Optimization

Next, we focused on the non-linear optimization of
Tsai’s algorithm. Instead of optimizing only three cal-
ibration parameters as is normally done in Tsai, we
optimized all 5 distortion coefficients, x and y coor-
dinates of the principle point, the focal length f, the
three components of the translation vector and three
rotation components in Rodrigues’ form (since it was
found experimentally that this representation of rota-
tion produced the best results). The optimization it-
self was performed with the Levenberg-Marquardt al-
gorithm from the cminpack open source library.

5.1.2 Second Optimization

Standard Tsai calibration derives a model that de-
scribes the relationship between the calibration object
and the image. However, with calibrating for rectifica-
tion in mind, our focus is on the relationship between
different cameras. Therefore we add a second opti-
mization to minimize inter-camera error.

P1
T = R1O

T + T1

P2
T = R2O

T + T2

(3)

In order to perform this second operation, we used
the extrinsic model depicted in Eq. 3. Here P1

T and
P2

T are two camera coordinate systems that have been
transformed from the calibration object coordinates
OT . The rotations R1 and R2 and the translations T1

and T2 are determined by the first optimization of the
algorithm. We define the relationship between the two
cameras as shown in Eq. 4. This relationship allows us
to initialize the rotation between cameras as R1

−1R2

and the translation as T2 − R1
−1R2T1. After ini-

tialization, optimization takes place using Levenberg-
Marquardt guided by the reprojection errors of cali-
bration points.

P2
T = (R1

−1R2)P1
T + (T2 −R1

−1R2T1) (4)

6 Results

The first series of experiments were performed in-
doors with controlled lighting. We implemented a
pipeline for Zhang, Tsai, Optimized Tsai and an un-
calibrated stereo pipeline. Results can be seen in Ta-
ble 1. The first step was point extraction (labelled Pnt
in Table 1). The quality of this extraction was eval-
uated by the amount of outliers removed during cali-
bration based on reprojection error. This amounted to
10% of measured points across the different pipelines.
The consistency of this number was due to same algo-
rithm being used across approaches. Calibration qual-
ity (Calib in Table 1) was measured via reprojection
error and is reported in pixels. The quality of distor-
tion removal (Dist in Table 1) was approximated using
a grid image and measured by the amount of devia-
tion from the each line of best-fit. The fully distorted
image we used had a typical deviation of about 63 pix-
els. Rectification accuracy (Rect in Table 1) was based
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on the average deviation per pixel from the horizontal
epipolar line. Experiments were repeated 10 times,
each time capturing a new set of calibration images
and running through the steps of each pipeline.

Table 1. Accuracy (pixels) in stages of of the
pipelines based on 10 calibration cycles

Type Pnt(%) Calib Dist Rect
Zhang [11] 0.1 ± 0.1 0.3 ± 0.2 9.1 ± 2.3 0.2 ± 0.1
Tsai [10] 0.1 ± 0.1 1.1 ± 0.6 11.8 ± 3.6 0.9 ± 0.3
OTsai 0.1 ± 0.1 0.5 ± 0.2 10.2 ± 2.9 0.5 ± 0.2
UnCal [6] N/A N/A 16.4 ± 5.2 1 ± 0.5

The same experiments were repeated outdoors where
Fig. 4 are some of our rectified images. We noticed that
in general uncalibrated and Tsai calibration techniques
produce the most warped images, while the Optimized
Tsai (see OTsai in Table 1) and Zhang produced less
distorted images. As our stereo box keeps our cam-
eras roughly in a canonical epipolar configuration, one
would expect the most accurate rectification to only
have minor warping.

Figure 4. Rectification: Uncalibrated (top left),
Tsai (top right), Optimized Tsai (bottom right),
Zhang (bottom left)

Fig. 5 depicts disparity maps produced after Zhang
and optimized Tsai calibration, rectification and stereo
matching [5]. While the Tsai disparity map is a little
more noisy, the obtained disparity map produces a rea-
sonable 3D reconstruction as can be seen in Fig. 6.

Figure 5. Optimized Tsai Disparity Map (left)
Zhang Disparity Map (right)

7 Conclusions

We managed to significantly improve on the per-
formance of the original Tsai algorithm. Our opti-
mized Tsai algorithm produces rectification with er-
rors within 0.3 ± 0.2 of a pixel to that of the Zhang

algorithm. The importance of this becomes obvious
when we consider the fact that Tsai’s algorithm only
requires a single image per camera while the Zhang’s
approach requires at least 15. As image acquisition
tends to be a manual process, using Tsai’s approach is
a significant saving. This fact, in conjunction with the
assurance that using Tsai’s approach does not result in
much reduction in accuracy, makes our optimized Tsai
algorithm an attractive proposition when calibrating
drone cameras for 3D reconstruction tasks.
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