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Abstract

A common method for performing multi-scale per-
son detection is a sliding window classification. For
every window location and scale a binary classification
is done. Many state-of-the-art person detectors follow
this sliding window paradigm. Not only this exhaustive
search space strategy is computationally expensive, it
usually produces large number of false positives.
In order to estimate an optimal reduced search space,
we derive a maximum a posteriori probability (MAP)
solution given only the person annotations of a dataset.
The proposed MAP solution considers the naturally
height distribution of persons, deviations from a flat
world assumption, and annotation uncertainty. The
effectiveness compared to the traditional uniform slid-
ing window selection strategy is shown on different re-
alistic monocular pedestrian detection datasets. More-
over the MAP search space estimation provides design
parameters for modeling the tradeoff between detection
performance and runtime constraints.

1 Introduction

The detection of pedestrians is an essential compo-
nent for advance driver assistance systems (ADAS). In
order to localize the pedestrians in the image, the first
step is to select image regions likely to contain persons.
After this candidate generation process, the selected
regions are classified as pedestrian or non-pedestrian.
The most common combination is the sliding window
classification. It consists in exhaustively scanning of
the image and a binary classification for every window
location and scale. The final object location is deter-
mined by non-maximum suppression. Many state-of-
the-art pedestrian detectors follow this sliding window
paradigm like the approach of Felzenszwalb et al. [1]
and the Fastest Pedestrian Detector in the West [2].
Despite the fact that such approaches can differ in
the way of scaling the image or the sliding window,
their shared drawback is the computationally ineffi-
ciency of an exhaustive scanning and the large number
of produced false positives in inappropriate regions like
the sky or windows inconsistent with perspective con-
straints [3].
The integration of prior knowledge about the scene can
be used to restrict the search space. Under a flat world
assumption the space of corresponding valid pedestrian
location can be reduced with the information about the
initial camera position with respect to the ground or a
fixed horizontal line. By just sampling the candidate

windows projected on the ground the number of candi-
dates is drastically reduced. For pedestrian detection
this concept is for example used in the approaches of
Bertozzi et al. [4] and Gavrila et al. [5]. In order to
overcome the limitations of a fixed camera ground po-
sition, some methods adaptively estimate the horizon
line or the ground plane. Such approaches often rely
on 3D information and use a stereo camera setup. A
good overview on 3D approaches for an effective can-
didate generation can be found in Geronimo et al. [3]
or Llorca et al. [6].
Nevertheless, the road position is adaptively estimated,
this information can be used to filter the standard slid-
ing window algorithm by geometric constraints. For
example, Sudowe et al. [7] derive an analytical solu-
tion for valid sliding window locations which can be
directly integrated in the detection process.
An alternative approach to reduce the number of can-
didates is to perform a coarse-to-fine search. As exam-
ple, the approach of Pedersoli et al. [8] is mentioned.
There, the search space is pruned based on the confi-
dence of the classifier on a particular scale. The clas-
sifier output can also be used for a branch and bound
technique. In the work of Lampert et al. [9], the out-
put of a support vector machine as classifier is bounded
to find a globally optimal solution at sublinear time.
In recent years there are more detection algorithms
which shun sliding window in favor of a segmentation
pre-processing step for candidate generation (see [10]).
Nevertheless there exist numerous alternative meth-
ods for candidate generation, we focus on approaches
which localize pedestrians based on a sliding window
classification. As described above, many state-of-the-
art pedestrian detectors follow this concept (see [11]).
In this work we propose a MAP solution for estimating
an optimal search space based on ground truth anno-
tations of the enclosing bounding boxes of pedestri-
ans. Thereby, geometric constraints for valid window
locations based on a naturally height distribution of
persons for a fixed camera to ground distance are in-
directly included. But in contrast to approaches like
Sudowe et al. [7] or Hoiem et al. [12], an active ground
plane or horizon line estimation is not needed. Here,
deviations of a flat world assumption and errors due to
manual labeling are offline determined and considered
for estimating valid window locations only from anno-
tations.
This paper is structured as follows: The maximum like-
lihood solution for reducing the search space based on
annotations is derived in section 2. The proposed MAP
solution is than presented in section 3. In section 4
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the effectiveness compared to the traditional uniform
sliding window selection strategy is shown in a quali-
tatively evaluation. Section 5 provides a conclusion.

2 ML Search Space Estimation

The maximum likelihood (ML) solution for reducing
the search space corresponds to find the most likely
scanning window. This means, that for a particular
scale only the most likely image region with the corre-
sponding fixed classifier window is scanned. In order
to estimate the ML solution from the pedestrian anno-
tations, we assume a normally distributed pedestrian
height and a normally distributed deviation from the
flat world assumption. According to this assumption
the optimal search space for a sliding window detector
corresponds to an average pedestrian on the ground
plane.
A shared concept of detectors which use a rigid rep-
resentation model is a fixed feature constellation in-
side the window. Therefore, training a classifier on a
rigid representation model using training samples with
strong position variations is not effective and can lead
to a loss of dominant property and meaningful charac-
teristic [13]. Hence, the sample height is normed to a
fix height, and the training data variation is mainly fo-
cused on capturing variation of pose, texture etc. and
not of different person heights. For training a rigid rep-
resentation model for a particular scale the samples are
resized to a common size including a padding of pixels
on top and at the bottom. Accordingly the classifier
is optimized for a normed person height and the as-
signment between the training height and the optimal
search space for an average person is logical. Here, we
define the search space for only capturing the person
height and not the padding pixels. Therefore the foot
point of a person standing on the ground can directly
be linked to a y coordinate and for classification the
chosen padding pixels have to be added. A common
choice for training a pedestrian classifier is the freely
available INRIA dataset [14]. There the standard win-
dow (scale 1) complies with a common size of 64× 128
pixels including a padding of approximately 16 pixels
on top and at the bottom. So the search space for a
classifier trained on INRIA has a height of 96 pixels
and the bottom coordinate of the annotations corre-
spond to the ground plane.
As basis for estimating optimal parameter settings

we first analyze the dependence between the pedes-
trian height in pixels and the y coordinate of the as-
sociated bounding box. Figure 1 shows the scatter
plots for the annotations of the Daimler Mono Pedes-
trian dataset [15] and the Caltech Pedestrian dataset
[11]. In the case of the Daimler dataset only anno-
tation from the first 10895 frames from the driving
sequence are considered. For Caltech the sets 01-05
from the training sequences are used. Based on our
assumption, the least squares model fit to the line
Y = β0 + β1X through the data pairs (Xi, Yi) with
Yi as the bottom coordinate of the search space and

Xi the person height obtains the line Y = β̂0 + β̂1X

where β̂1 =
∑

XY−nX̄Ȳ∑
X2−nX̄2 and β̂0 = Ȳ − β̂1X̄ with

X̄ = 1
n

∑n
i=1 Xi, Ȳ = 1

n

∑n
i=1 Yi,

∑
XY =

∑n
i=1 XiYi

,
∑

X2 =
∑n

i=1 X
2
i . Considering a probabilistic model

for linear regression Yi = β0 + β1X + εi and assum-

Figure 1. Distribution of the bounding box height
with respect to y-bottom coordinate and result-
ing ML search space. On top for the Caltech
dataset and on bottom for the Daimler dataset.

ing the εi are i.i.d. with N (0, σ2). The least square
estimate for μi = β0 + β1xi is exactly the ML esti-
mate. For the model Yi = μi + εi the ML estimates

of β0 and β1 are the least squares estimates β̂0 and

β̂1. For guessing a particular search space at a par-
ticular scale respectively height, say X, the regression

model guesses β̂0 + β̂1X. The ML search spaces for
the Daimler and the Caltech dataset are depicted in
figure 1. The average gradient magnitude image over
the positive training examples of the INRIA dataset
are overlaid, so that the person foot point corresponds
to the ML solution and the person top corresponds to
the upper y coordinate of the search space.
For evaluating how well the assumptions of an av-

erage flat world fits, we compare the horizon line es-
timated with our ML solution to the horizon line es-
timated with the given camera parameters from the
Daimler dataset. If the camera tilt is small, estima-
tion of the horizon line y0 can be simplified by using
the known camera height hc, the object world height
and object image height [12]. By assigning the average
person (we set the average height h̄ to 171.5cm and the
standard deviation σh to 12cm; see [16]) to the scale 1
search space the resulting horizon position is given by
y0 = 96hc

h̄
+ Ŷ96. Figure 2 illustrates the good agree-

ment between both results, where the ML solution is
on the right and the solution estimated with the ex-
ternal and internal camera parameters is shown on the
left.

431



Figure 2. Horizon line estimation with the extrin-
sic and intrinsic camera parameter (top) and de-
rived from the ML fit based on annotations and
known height above ground (bottom).

3 MAP Search Space Estimation

The ML estimation of the reduced search space θ̂ML

(the bottom point of the regression fit plus the cho-
sen height rather scale) is optimal for a fixed camera
to ground distance and for an average person standing
on the flat ground. In many scenarios, there are some
deviations to this ideal situation. The main errors are
caused by the height variation of persons, deviation
of a flat world, and annotation errors. For example,
under a small camera tilt, which is valid for a ADAS
setup, the foot point of a smaller person is related to
a lower y coordinate (see [7]). Further, the same de-
viation to the ML search space can also be caused by
an average height person standing on lower ground.
These deviations are independent from each other and
additive.
In order to find the optimal reduced search space,

S is considered to be a random variable given the an-
notations of the person height H in pixels. The MAP

estimate is defined as θ̂MAP = argmaxs∈SP (S|H) and

can be written in terms of θ̂ML (see [17]) leading to

θ̂MAP = θ̂MLP (H). The definition of the prior P (H)
is based on the chosen probabilistic model for linear
regression Yi = β0 + β1X + εi. The difference between
the observed y coordinates from the annotations Yi and
predicted outcome Ŷi is the residual ei = Yi−Ŷi, which
is the vertical distance to the regression line. Least

squares (ML) estimate complies with minimizing the
sum of squared errors (SSE)

∑n
i=1 e

2
i and ei can be

seen as an estimate of the εi. The variation of the
person height is proven to be normally distributed. In
addition the deviation of the flat world is also assumed
to be normally distrusted and independent from height
variations. The annotation errors can be interpreted as
additive Gaussian noise. Overall, one receives an er-
ror distribution, which is the superposition of the three
error sources. In our experiments, the assumptions of
a Gaussian distribution residual error fits well for the
Caltech and Daimler dataset annotations.
In addition, to just modeling the prior based on the
residual error distribution, the prediction interval of
the regression fit is used. A prediction interval is an
estimate of an interval in which future observations
will fall with a certain probability, given what has al-
ready been observed. This captures the variability in
the data. Here the upper and the lower bound of the
prediction interval extends the ML search space for a
given quantile and allows to reduce the search space at
a chosen scale. These and the following derivation are
based on classical regression theory (see for example
Draper and Smith [18] for further details). For iden-

tically distributed errors the
θ̂ML−θj

σ̂ statistics follows
a t-distribution with (n − 2) degrees of freedom and
a normal distribution for a large number of annota-
tions n. The ML estimate of that variance is given by
σ̂2 = 1

n−2

∑n
i=1 e

2
i = SSE

n−2 so that E(σ̂2) = σ2. This is

also called the mean square error (MSE) of the regres-

sion. If the true model is known and hence β̂0 and β̂1

are the true parameters then the computed coefficients

β0 and β1 are estimates of β̂0 and β̂1, respectively. The
standard errors of the parameter can be neglected if the
number of annotations is high or the regression param-
eters β0 and β1 are known. Contrary, the prediction
interval would still have width and is a good choice to
extend the search space for the detector. The stan-
dard deviation of a future observation at point xp can
be calculated as follows:

σ̂yp
= σ̂

√
1 +

1

n
+

(xp − x̄)2∑
x2 − nx̄2

. (1)

The corresponding (1−α) prediction interval can be
constructed using a t-quantile read at n− 2 degrees of
freedom:

yp ∈ [ŷp − σ̂ypt1−α/2;n−2, ŷp + σ̂ypt1−α/2;n−2]. (2)

The results for the annotation data for the selected
sequences for the Caltech and Daimler dataset are
shown in figure 3 and the estimated parameter for the
search space reduction are summarized in table 1.
The limits of the prediction interval are used to esti-

mate the MAP search space. By choosing a t-quantile
and thereby the percentage of pedestrians inside the
search space, a tradeoff between detection performance
and runtime constraints can be achieved.

4 Results

In this section, we evaluate the effectiveness of the
proposed approach and discuss several effects, which
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Table 1. Parameters for the optimal search space
estimation.

dataset n β̂1 β̂0 R2 σ̂
Daimler 8615 0.711 196.505 0.827 13.048
Caltech 52117 0.716 184.316 0.848 15.403

can lead to a non-optimal result. First, the MAP solu-
tion based on the annotations is compared to a MAP
solution that takes only the persons height into ac-
count. On this account, the camera to ground distance
is assumed to be fixed. Hence, all deviations from the
ML search space bottom y coordinate are caused by
the height variation. For modeling the prior, specific
statistics about the person height distribution can be
used (e.g. we set h̄ to 171.5cm and the standard devia-
tion σh to 12cm). With the chosen height distribution,
one can estimate the new limits for every scale by using
equation 2. The results with t1−α

2
= 1.96 are shown

in figure 3. The figures clearly show how the proposed
model captures deviations from a fixed camera ground
distance or violations from a flat world assumption.
Too big or small annotation boxes can easily be consid-
ered as an additional Gaussian noise term. Normally
one would expects that the variance of the residual er-
ror increases strongly for larger scales. Firstly, due to
height distribution of occurring annotation heights in
the data, the larger scales are under-represented (see
[11]). Further, the larger scales are closer to the cam-
era and in typical street scenarios there is less varia-
tion for short range distances to the car. Hence, errors
compared due to height variations seem to be more
common for close ranges. For small scales there is a
gradual shift towards variation caused by changes in
the camera ground distance. A constant variation of
all error sources would lead to a heteroskedasticity of
the error distribution. Classical linear regression mod-
els rely on the fact that there is no heteroscedastic-
ity. Heteroscedasticity does not cause ordinary least
squares coefficient estimates to be biased, but it can
cause standard errors obtained from data analysis to
be above or below the true variance. In the used anno-
tation data, we could not determine this effect. More-
over, by dividing the pedestrian height into different
scale ranges and individually estimating the error vari-
ance a too strong bias can be avoided. Motivated by
the distribution of annotation heights in the data set,
only the scales between 20 and 140 pixels are consid-
ered, which captures according to Dollár et al. [11]
pedestrian from near, middle and far scales. Because
the higher rather near scales are under-represented, a
further division into the corresponding scales ranges is
not applied.
In order to determine the goodness of the regression
fit, the coefficient of determination R2 is calculated.
R2 is the percentage of the variation that is explained
by the model. The values of R2 for the Caltech and
Daimler dataset are shown in table 1.

Inside the chosen scale range the error has almost a
constant variance. By using this error distribution to
model the prior of the MAP search space estimate, we

Figure 3. The MAP search space estimate for a
prediction interval (α = 0.025 and t1−α

2
= 1.96)

with a annotation based prior model is compared
to the MAP solution with a prior model only from
a person height statistics. On top for the Caltech
dataset and on bottom for the Daimler dataset.

can compare the resulting reduced search space with an
exhaustive search. When performing a sliding window
classification, the image is traversed from the top-left
corner with a certain stride on both axes. Figure 3 also
includes the comparison of an exhaustive search with
a minimum stride of 1 pixel to a MAP estimate with
α = 0.025 and t1−α

2
= 1.96 for the scales between 20

and 140. Areas which are excluded from scanning, lie
outside of the prediction interval. By adapting the con-
fidence value for the prediction interval and the stride
of the sliding window, one is able to gradually choose
between fixed time constrains and the probability of
missing persons outside the MAP search space.
For a person height of 96 pixels complying with a win-
dow size of 64 × 128 pixels (scale 1) the MAP search
space is visualized over the heatmap for all occurring
annotation bounding boxes for heights smaller than 96
(see figure 4). By choosing a prediction level of 95%
and as reference detector the approach of Dollár et
al. [2], one is able to reduce the false positive rate in
case of a persistent miss rate on both datasets. Ac-
cordingly, the performance is slightly improved. This
performance boost in addition to the reduced runtime
vanishes for smaller prediction levels. Leading to a
tradeoff between detection performance and runtime
constraints.
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Figure 4. ML search space for the Caltech dataset
for scale 1 (top; horizontal dotted lines). On bot-
tom the heat map of the annotation bounding
boxes with the MAP search space for 95% pre-
diction limit (scale 1).

5 Conclusion

In this paper, we presented an MAP solution for re-
ducing the search space of a sliding window pedestrian
recognition scheme. In addition to a ML solution, the
deviation of a flat world assumption and the real world
person height distribution is considered in the model.
All calculations are only based on annotation data from
realistic monocular pedestrian datasets and also take
manual annotation errors into account. The methods
provides design parameters for the probability of miss-
ing persons outside of a detection corridor while tak-
ing maximum advantage of the sliding window scheme.
The effectiveness of the proposed approach and several
effects, which can lead to non-optimal output are dis-
cussed on the Daimler and on the Caltech datasets.
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M. Arens: “Automated Generation of High-Quality
Training Data for Appearance-based Object Models,”
Unmanned / Unattended Sensors and Sensor Networks,
2013

[14] N. Dalal and B. Triggs: “Histograms of oriented gra-
dients for human detection,” Conference on Computer
Vision and Pattern Recognition, 2005

[15] M. Enzweiler and D.M. Gavrila: “Monocular Pedes-
trian Detection: Survey and Experiments,” Transac-
tions on Pattern Analysis and Machine Intelligence,
2008

[16] Federal Statistical Office of Germany: “Height, weight
and body mass index of the population by sex and age-
groups; Results of Microcensus,”2009

[17] J.O. Berger: “Statistical decision theory and Bayesian
analysis,” Springer Series in Statistics, 1985

[18] N.R. Draper, H. Smith: “Applied regression analysis
(2. ed.),” Wiley series in probability and mathematical
statistics, 1981

434


