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Abstract

Computer vision is traditionally defined as the anal-
ysis of the content of images. In the context of medical
imaging, this naturally leads to a focus on segmentation
and registration. I argue that there is an underappre-
ciated opportunity for computer vision researchers in
the domain of image creation. I illustrate the technical
challenges involved, with an emphasis on magnetic res-
onance (MR) imaging. These problems have unusual
features that make them intellectually interesting, be-
yond their obvious practical importance.

1 Medical image creation

Most research in medical imaging is driven, explic-
itly or implicitly, by the long-term goal of automatic
diagnosis. As a consequence, the vast majority of work
focuses on registration or segmentation. This is a nat-
ural course for researchers to take, since registration
and segmentation problems arise in a wide range of
computer vision problems.

However, a look at the radiology literature is quite
revealing. Most issues of the main journal, Radiol-
ogy, devote approximately 25% of their coverage to
an important but underappreciated problem, namely
the creation of diagnostically informative images in
the first place. Most imaging devices (especially
CT/PET/MR) collect raw data that does not directly
correlate with pixel values; instead, the data must be
somehow transformed to create an image. This prob-
lem is sometimes referred to as acquisition (which fo-
cuses on the collection process itself), and sometimes
as reconstruction (which focuses on the transformation
process). For simplicity, I will refer to this problem as
image creation.

An illustrative example comes from CT imaging.
Within the space of a few months, Radiology published
papers that proposed new CT techniques for creating
diagnostic images for ischemic stroke, prostate cancer
and coronary artery disease.1 Each of these papers pro-
vides evidence that their new technique will improve
diagnostic accuracy.

1.1 Is image creation a computer vision prob-
lem?

The importance of creating a quality image for diag-
nostic purposes is entirely obvious, and is not affected
by whether the diagnosis itself is performed by a com-
puter, a human, or a human aided by sophisticated
computational tools. However, it is not immediately
obvious why image creation would be of interest to

1The papers mentioned have PubMed ID 21062925, 20663968
and 20093513, respectively. I have not cited them explicitly in
the bibliography since they are examples purely for purposes of
illustration.

computer vision researchers. The traditional relation-
ship between computer vision and computer graphics
is that computer vision analyzes images, while com-
puter graphics creates images. Under this definition,
image creation is a graphics problem and not a vision
problem at all.
However, it is clear that the traditional boundary be-

tween graphics and vision has been in flux for a number
of years. SIGGRAPH regularly publishes papers that
use computer vision techniques; the most prominent
such examples come from the creation of photo mon-
tages, but there are many others. Such papers also
frequently appear in the computer vision literature.
To put it differently, on a regular basis the main vi-

sion conferences and journals publish algorithms whose
output is another image. This, of course, is very much
in the tradition of image processing, and in fact the line
between image processing and computer vision has al-
ways been a very blurry one. (In my personal opinion,
it is primarily a philosophical distinction: image pro-
cessing researchers do not generally think about the
3D scene that gave rise to an image, while this is of
great importance to researchers in computer vision.)

1.2 Deconvolution with priors

A particularly interesting and relevant example
comes from image deblurring or deconvolution, which
is a core image procesing topic that has gathered great
interest from computer vision researchers. While there
are many papers in the field, I wish to particularly
point to the work of Anat Levin and her co-authors
(see for example [16]) and the research from Bill Free-
man’s group on motion magnification [4].
In deconvolution, the goal is to create a fast algo-

rithm to solve an ill-posed problem by imposing realis-
tic priors. The different methods for this problem are
distinguished primarily by their choice of priors and of
algorithms. These choices are not independent; an un-
realistic prior can sometimes be justified on computa-
tional grounds, while a fast algorithm can make previ-
ously intractable priors suddenly practical. In general,
more specific algorithms perform better than more gen-
eral algorithms. This is a fundamental tradeoff in com-
puter science, and suggests that the best optimization
technique to choose is the most specific one that can
be adapted to solve a particular problem, perhaps by
changing the problem definition slightly.

2 Image creation is deconvolution with a
prior

The creation of CT and MR images from the raw
data acquired by a scanner turns out to involve a par-
ticular form of deconvolution. In many respects this
fact is retrospectively obvious, though it seems to be
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underappreciated in the computer vision and medi-
cal imaging community. Scanners, like most sensors,
are linear within their intended operating ranges. The
scanning process inherently loses information, and so
one is faced with the problem of creating an image that
is consistent with the observed data but also with prior
expectations about the general appearance of images.

Imaging problems that are inherently ambiguous,
and which require fast algorithms for realistic priors,
are a major topic in computer vision and lie at the core
of my own research interests. In addition, as mentioned
above this is a problem of great practical important to
clinicians; a substantially better method for creating
CT or MR images would almost certainly save a con-
siderable number of lives.

Within the MR community, there has been slow
movement towards thinking of the image creation
problem as a deconvolution problem with a prior.
Some of the most notable work in this direction was
done by Z-P Liang and colleagues [18, 17].

2.1 Can we do better via post-processing?

For researchers who are not excited by the techni-
cal challenges of deconvolution problems, a natural ap-
proach is to take the output of current image creation
algorithms and try to improve it as a post-processing
step. While tempting, in my view this approach is
not likely to lead to success. The artifacts created
have structures that reflect the image aquisition pro-
cess, and can be quite strong; for example, CT im-
ages often exhibit streaking artifact, while MR tends
to have ghosting. Without modifying the underlying
image creation process I do not believe that it is possi-
ble to correct such artifacts without damaging the un-
derlying images. I take as evidence the experience with
fMRI images, which are significantly distorted during
the acquisition phase; attempts to undo this distortion
during post-processing have had limited success [10].

3 Parallel imaging in MRI

A particularly interesting image creation problem
arises from a technique to accelerate MRI called paral-
lel imaging. Reducing scan time is of great importance
for MR; it is not just a matter of patient comfort, im-
portant though that is. MR imaging essentially gen-
erates a limited amount of information per unit time,
and this information can be deployed to either improve
spatial or temporal resolution.

As mentioned above, fMRI images are severely dis-
torted and have poor spatial resolution; this largely
arises from the need for speedy imaging of neural ac-
tivity. Better image creation techniques would lead
to higher spatial or temporal resolution, which would
be of great value. Beyond fMRI, the most obvious
target for MR is cardiac imaging, where motion is an
enormous problem. Part of the success of MR for neu-
roimaging arises from the simple fact that the head is
one of the few body parts that can be immbolized for
a prolonged period.

Parallel imaging [20] uses multiple receiver coils to
substantially accelerate MR imaging, often by a factor
of 2 or 3. The imaging problem is explicitly formu-
lated as a linear inverse system and solved with least
squares. The standard Tikhonov regularizer used [20],

however, imposes an unnnatural prior that prefers im-
ages with the lowest possible intensity (i.e., a perfect
MRI is completely black). None the less, the resulting
inference problem is convex and can be solved quite
efficiently.

3.1 Parallel imaging with graph cuts

My own interest in this problem was due to my stu-
dent Ashish Raj, who realized that graph cut methods
could be quite helpful for this parallel imaging prob-
lem. Graph cut techniques, which were popularized in
vision by my research group [3, 14], can perform fast
inference with realistic image priors. These methods
are widely used, and successful on a range of bench-
marks [25]. [24] contains a good discussion of graph
cuts and their applications in vision, together with an
overview of some competing approaches. A review of
discrete optimization methods for vision is provided by
[5].

Ashish’s initial observation was that the linear in-
verse system that arises in parallel imaging poses some
serious difficulties for graph cut methods [22]. Shortly
afterwards, however, Kolmogorov and Rother intro-
duced into computer vision some much more general
graph cut techniques [13], based on the work of opti-
mization researchers including Boros and Hammer [2].
We went on to apply these improved graph cut meth-
ods to MR parallel imaging [21]. A number of im-
provements to the basic method have been proposed,
notably a cardiac imaging technique [23]. I will note
in passsing that my group’s work on this problem was
more or less contemporaneous with the well-known
work of Lustig and collaborators on the use of com-
pressed sensing to solve similar problems [19].

3.2 The research frontier: higher order priors

The main challenge with graph cut methods for MR
reconstruction is that the priors that we support with
fast inference, while realistic, were simply too weak.
The graph cut priors involve pairs of adjacent pixels;
while we can support a realistic assumption that im-
ages are piecewise smooth, the restriction to pairs of
pixels at a time is a major limitation.

Many groups are working on higher order priors; a
notable early success was [26], which showed their effec-
tiveness for certain stereo matching problems. A very
incomplete list of researchers who have done important
work on higher order priors would need to include Hi-
roshi Ishikawa, Nikos Paragios, Phil Torr, as well as
many others; in fact, the IEEE Transactions on Pat-
tern Analysis and Machine Intelligence has a special
issue on higher order priors in press.

My own work on this topic has focused on graph
cuts. One line of work reduces higher-order priors to
first-order; the first paper to make this practical was
[11, 12]. Working with Endre Boros, my student Alex
Fix proposed an improved reduction method [6, 7].
Another approach, developed by Alex Fix and Chen
Wang, is to generalize the powerful primal-dual ap-
proach of Komodakis and Tziritas [15] to handle higher
order terms directly [8].
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4 An alternative approach

A closely related way to think about this problem,
that does not directly involve images, is the selection
of the appropriate parameters for an imaging exam.
Modern CT and MRI consoles are essentially pro-
grammed with templates, that provide default param-
eter settings (called protocols) for a variety of different
imaging exams.

The selection of the appropriate protocol is often
done by technologists rather than physicians, espe-
cially at smaller hospitals or when there is no radi-
ologist on duty (see, e.g., [9]). There is considerable
evidence that mistakes in protocol selection are costly,
either in terms of repeated exams (and, for CT, ad-
ditional ionizing radiation), or worse still in terms of
reducing diagnostic accuracy. My group has looked at
this problem recently from the perspective of machine
learning [1], and obtained some interesting preliminary
results.

5 Conclusions

In this paper I have articulated a case for researchers
in computer vision and medical imaging to focus on
the image creation problem. The problem combines
interesting theoretical aspects with the potential for
substantial impact.

My own work has focused on graph cut methods,
and their extensions to higher order. The higher-order
graph cut techniques we have developed in [7, 8] are
very powerful, and have interesting theoretical guaran-
tees. However, quite a bit of engineering work remains
to be done to close the loop and show that these meth-
ods generate improved performance on MR reconstruc-
tion problems.
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