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Abstract

The scale invariant feature operator (SFOP) detects
circular features from an image using a spiral shape
model. Special cases of the spiral model are junctions
and circular symmetric shapes. The spatial localiza-
tion is determined with subpixel accuracy which is ob-
tained by an interpolation of the structure tensor in
the scale space. For the interpolation, SFOP uses a
3D quadratic function. This leads to suboptimal solu-
tions since the structure tensor surrounding a feature
does not show the shape of a 3D quadratic. The aim of
this paper is to improve the localization of the features
detected by SFOP. A Difference of Gaussians function
is proposed for the signal approximation which leads
to improved precision values and to more accurate fea-
tures. The proposed method improves the localization
such that 72.5% of the features increase their preci-
sion. Hence, more features are extracted while increas-
ing their repeatability by up to 9% on standard bench-
marks.

1 Introduction

Scale invariant features play an important role in
many computer vision applications, such as object
recognition or scene reconstruction. In object recogni-
tion, the scale invariant feature transform (SIFT) tech-
nique [11] provides very good results for localization
and matching. For scene reconstruction, the SIFT de-
tector becomes more and more important, especially
when a wide baseline correspondence analysis is re-
quired [3, 14]. The detected features are robust to
changes in illumination, rotation, scale, and to sur-
prisingly large viewpoint changes.
Recently, several scale invariant feature detectors

have been proposed to focus on different shapes that
occur in an image. The goal is to complete the descrip-
tion of the observed scene using complimentary feature
types. The scale invariant feature operator (SFOP) junc-
tions (cf. Fig. 1) proposed in [7] are of special interest
because of its complementary property in conjunction
with SIFT features. The combination of SIFT features
and SFOP junctions maximizes the completeness with
respect to image content [6, 8]. Hence, a very good
distribution of features in the image can be achieved,
which is essential for image coding as well as for scene
reconstruction.
The SFOP junctions are localized by maximizing

the precision in the Laplacian of Gaussians (LoG)
scale space [7, 10]. For subpixel and subscale fea-
ture localization, the precision is approximated by a
3D quadratic. This approach commonly used by scale
invariant feature detectors [1, 2, 9, 11] due to its com-
putational efficiency. However, the interpolated gradi-
ent signal does not show the shape of a 3D quadratic
which leads to a systematic error, as shown for SIFT

Figure 1: The detected junctions marked with cyan
color are better explained with the proposed local-
ization technique than with the reference [7] (yellow).
They are selected because of their higher precision.

in [4].
We improve the SFOP subpixel localization by a Dif-

ference of Gaussians approximation of the LoG scale
space. This is well-justified, because scale invariant
features and junctions are modeled by using a signal
model with Gaussian shape [10]. For the evaluation,
the repeatability criterion on two image benchmark
data sets is used [5, 12]. The repeatability measure
thresholds the overlap error to decide if detected fea-
ture pairs in two images are correct and counts valid
feature pairs.
In the following Sect. 2, the reference localization

technique using the SFOP approach is briefly ex-
plained. In Sect. 3, the proposed signal adapted lo-
calization technique is presented. Sect. 4 shows the
experimental results on natural image data. In Sect. 5,
the paper is concluded.

2 SFOP Feature Localization

The detection of SFOP features is done by localiz-
ing image positions x0 = (x0,y0) with locally maximal
precision [7]. The precision d̃(τ) introduced by Linde-
berg [10] is calculated from the gradient vector ∇τg(x′)
and a Gaussian Gσ(x′) in the scale space [7]:

d̃(τ) =
∫ |(x0 −x′)�∇τg(x′)|2Gσ(x′)dx′

∫ |∇τg(x′)|2Gσ(x′)dx′
(1)

Here, τ depicts the differentiation scale and σ is the
integration scale.
For each point (x0,y0,σ) those scales σ are selected

which have locally highest precision. The local maxima
are found by evaluating, if the precision value in each
scale σ is bigger or smaller that its 26 neighbors. A
subpixel and subscale localization step is applied [2] to
increase the accuracy of initially detected features.
Since the precision is calculated from a Laplacian

Pyramid, the shape of the precision values nearby a
feature is still Laplacian. This is demonstrated for
an examples in Fig. 2. The gradients have Lapla-
cian shape, they are not quadratic. Our motivation
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is to show that exchanging the obviously suboptimal
quadratic approximation with a signal adapted func-
tion leads to higher accuracy of the feature. We also
show that our proposal leads to larger precision values.

(a) Junction features
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(b) Precision shape

Figure 2: Input image (from [7]) and the precision
shape surrounding one of the detected junctions.

3 Signal Adapted Feature Localization

The localization procedure aims at determining sub-
pixel coordinates for the detected feature. In [7], the
precision (1) is interpolated using a 3D quadratic ap-
proximation and the 3×3×3 neighborhood. As shown
in Fig. 2 for a detected junction, the precision does
not show a quadratic shape in the neighborhood of
the feature position. To account for the shape of the
gradients, a signal adapted localization procedure is
introduced.
Inspired by [4], we approximate the image gradients

by a circular Difference of Gaussians shape:

Dx0,σ,l(x) = l ·
(

exp(− (x−x0)
2

2σ2 )− exp(− (x−x0)
2

2σ2
k

)

)

(2)
This function is determined by the parameters p =

(x0,σ, l), x0 = (x0,y0). The second standard deviation
σk is determined by the known distance k between two
scales of the pyramid. An example is shown in Fig. 3.
The parameters are obtained using the Levenberg-
Marquardt optimization. The initially detected scale
provides a reasonable initialization of the parameters.
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Figure 3: Proposed regression function for the approx-
imation of the gradient image signal of the scale space
as demonstrated in Fig. 2.

After reaching the minimal distance between the
function (2) and the precision values in the 3× 3× 3
neighborhood of the detected feature, the precision at
the maximum is computed and compared to the pre-
cision achieved by the original interpolation using the
3D quadratic. The feature localization with the larger
precision value is chosen. As shown in the results sec-
tion, the DoG precision is larger in most cases. Some-
times the precision of the 3D quadratic is larger due to
a diverging optimization procedure of the more chal-
lenging DoG optimization. In Sect. 4, a comparison of

the resulting precision is shown as well as the accuracy
evaluation using the repeatability criterion.

4 Experimental Results

For evaluation, the repeatability on two benchmark
data sets with perspective distortion is used (cf. Fig. 4).
The sets consist of sequences of six images which show
a planar scene captured from a varying viewpoint with
increasing angle relative to the first image. Since the
data from [5] provide higher accuracy, we show the
whole data set [5] (2048× 1365) and the most promi-
nent sequence Graffiti from [12] (800×640). An exam-
ple sequence Posters is shown in Fig. 5. The results for
the precision are presented in Sect. 4.1, the repeata-
bility results are shown in Sect. 4.2. The reference lo-
calization is denoted as REF SFOP and the proposed
localization as DOG SFOP.
Certainly, the computational expense of DOG SFOP

is larger than of REF SFOP. The time for the localiza-
tion increases by a factor of 3.

Figure 4: First images of the benchmark image
sequences [5, 12] presented in the results section.
From left to right: Graffiti [12], Grace, Underground,
Posters, There, Colors [5].

4.1 Precision

The proposed localization technique leads to an in-
crease in precision for all tested images. In Tab. 1, the
numbers of features with a larger precision are shown.
The number of junctions with larger precision value is
24392 for the 3D quadratic and 64396 for DoG, eq. (2).
This means that 72.5% of the junction features are
better explained by the proposed DoG shape although
this approach builds on a much more challenging op-
timization scheme. Overall, 10.7% more junction fea-
tures are extracted by DOG SFOP because of their
increase in precision. The only sequence, in which
DOG SFOP does not provide more features than the
reference REF SFOP [7], is Colors.

Table 1: Numbers of extracted junction features by
REF SFOP or DOG SFOP subsumed for all six images
of each sequence. The proposed method provides more
features (cf. Sect. 4.1).

Approach REF SFOP DOG SFOP
Localization Quadr. Quadr. DoG

Graffiti 5008 1262 4347
Grace 15563 4337 12410

Underground 10382 3375 7998
Posters 35240 9733 29257
There 6885 3651 5349
Colors 7117 2034 5035

Σ 24392 64396
80195 88788
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Figure 5: Example benchmark sequence Posters with the largest number of junctions in the test set (cf. Tab. 1).

4.2 Repeatability

For the evaluation with natural images, the same
benchmark data sets are used (Fig. 4). For the map-
ping from the first image to the others, ground truth
homographies are provided. If the feature which is de-
tected in the first image is also detected in the second
image, the feature pair is deemed correct. A thresh-
old value εO = 0.4 defines the maximally allowed error
of a feature pair. It is calculated by the overlap er-
ror [12]. The repeatability is the ratio of correctly de-
tected feature pairs to the maximally possible number
of correct feature pairs. It is calculated by the Matlab
script provided by the authors of [12]. The bench-
mark [12] provides image resolution of 0.5 megapixels
while the data set [5] provides higher resolutions. To
account for the higher resolution of the images [5], the
number of octaves in the SFOP detector is set to 4
while the standard 3 is used for Graffiti. Additionally
to the junction (JUNC) evaluation, the circular sym-
metric (CIRC) features are evaluated with the same
localization techniques. To extract the junctions using
the SFOP detector, the parameter type is set to 0, for
the circular symmetric features, type is set to 90.
The results are shown in Fig. 6 and Fig. 7. The

repeatability increases for every sequence, except for
Colors. Here, the junction repeatability for REF SFOP
is larger than DOG SFOP for the image pairs 1-2 and
1-3. The Colors sequence is known as a very challeng-
ing scenario [13] and only 20 valid feature pairs are
extracted. The performance of SFOP is poor on these
images. Thus, the repeatability results are very sensi-
tive to the selection. On the other hand, the circular
symmetric features (CIRC) show better results with
DOG SFOP on Colors.
The maximum gain for DOG SFOP compared to

REF SFOP is ∼9%, not regarding Colors. The number
of valid feature pairs increases in every case, which
means that more accurate features are extracted due
to the proposed localization technique. For Posters,
∼30% more features are extracted while increasing the
repeatability.

5 Conclusions

The proposed approach exchanges the quadratic
subpixel and subscale localization of the SFOP de-
tector. This is motivated by the signal shape of the
junction gradients, which is not 3D quadratic. The
proposed Difference of Gaussians shape increases the
precision for 72.5% of the features. The number of ex-
tracted valid feature pairs increase in every case. The
number of pairs increase by up to 30% while provid-
ing an increased repeatability. The results are found
on standard benchmark data sets. Additionally, it is
shown that the results are valid for the circular sym-
metric features. The only drawback of the proposed
method is the computational expense which increases

by a factor of 3.
Nevertheless, the proposed approach provides a sig-

nificant improvement of the SFOP feature localization
and can be applied to other feature detectors as well.
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(a) Graffiti: Repeatability
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(b) Grace: Repeatability
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(c) Underground: Repeatability
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(d) Graffiti: Correspondences
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(e) Grace: Correspondences
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(f) Underground: Correspondences

Figure 6: Repeatability (top) and absolute number of correct feature pairs (bottom row) for Graffiti (800×640) [12],
Grace, and Underground (2048×1365) [5]. The triangles �, � denote the results of the proposed localization for
junctions and circular symmetric features, respectively.

2 3 4 5 6
0

10

20

30

40

50

60

70

80

R
ep

ea
ta

bi
lit

y 
%

Viewpoint

 

 
REF SFOP CIRC
DOG SFOP CIRC
REF SFOP JUNC
DOG SFOP JUNC

(a) Posters: Repeatability
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(b) There: Repeatability
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(c) Colors: Repeatability
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(d) Posters: Correspondences
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(e) There: Correspondences
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(f) Colors: Correspondences

Figure 7: Repeatability (top) and absolute number of correct feature pairs (bottom row) for Posters, There, and
Colors (2048× 1365) [5]. The triangles �, � denote the results of the proposed localization for junctions and
circular symmetric features, respectively.
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