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Abstract

Noise is an impairment which often occurs in both
film and digital video and severely degrades the viewing
experience of the content. In this work, we propose a
two-phase algorithm for film an video denoising. In the
first phase, the concept of semi-local shrinkage func-
tions is used to effectively separate noise from image
structure. In the second phase, we show how to fuse
the result images of the first phase in a way which is
robust to motion-compensation errors. A quantitative
evaluation of the proposed algorithm on a realistic test
dataset with noise of different coarseness and magni-
tude shows that the proposed method delivers better re-
sults than the video denoising method CVBM3D.

1 Introduction

Noise is an impairment which often occurs in both
film and digital video. In film, it is known as film grain
and results from the visual accumulation of the silver
particles in the film emulsion layers. Digital noise is an
inherent characteristic of digital sensors and is due to
random fluctuations in the number of received photons.
The occurrence of noise, either as film grain or digi-
tal noise, lowers the viewing experience considerably.
Furthermore, it lowers the compression ratio when en-
coding the noisy content with commonly used video
formats (e.g., MPEG-4 AVC [10]) for storage or de-
livery, as the high-frequency noise components require
more coefficients for encoding. Therefore, denoising
of film and video content is an essential step in video
processing systems.
One can classify the State-of-the-Art algorithms for

film an video denoising roughly into three classes:
Patch-based, transform-based and combined algo-
rithms. Patch-based algorithms take usage of the
temporal and spatial redundancy. Usually, for a
small patch in an image, one can find several similar
patches in the same image and in temporally neigh-
boring images. So these approaches apply some sort
of similarity-weighted averaging over all similar blocks
in order to retrieve the denoised block. Algorithms
belonging to this class are the Non-Local Means algo-
rithm [2] and regularized variants like [9]. A disad-
vantage of these methods is that their runtime is high
due to the expensive block-matching and the similarity
computations and they may smooth low-contrast im-
age areas too much. Transform-based algorithms work
by transforming the image or a whole spatio-temporal
volume into a different base, where the base is cho-
sen so that the image information is concentrated in
few coefficients with a high magnitude. Many different
transforms have been proposed in the literature like

DCT [4], wavelet transforms [6] or the curvelet trans-
form [8]. After transform, different kinds of shrink-
age are employed in order to keep to the significant
coefficients and finally the inverse transform is ap-
plied. Transform based algorithms are attractive be-
cause they are fast and have a good noise suppression
ability if the threshold is properly chosen. On the other
side, they are often prone to generating high-frequency
artifacts in the denoised image, especially when non-
redundant wavelet transforms are used. Combined al-
gorithms incorporate principles from both patch-based
and transform-based methods. One of the most famous
algorithms of this class is the V-BM3D algorithm [3]
and its extension CVBM3D for color video. Its basic
principle is to group patches according to their similar-
ity, transform this group via a 3-D wavelet transform
and filter it via a shrinkage method. The CVBM3D
algorithm is considered as one of the best video de-
noise algorithms, but due to the complex approach its
runtime is very high.
The paper is organized as follows. In section 2 we

present the proposed algorithm for film and video de-
noising and will describe both phases of the algorithm
in detail. In section 3 we give an evaluation of the
algorithm on a test dataset where realistic noise of dif-
ferent type and magnitude has been added, and section
4 concludes the paper.

2 Proposed algorithm

The proposed hybrid wavelet and temporal fusion
algorithm (termed HWTF in the following) consists of
two phases. In the first phase, the hybrid wavelet de-
noising (see section 2.1) a wavelet-based denoising is
applied using the novel concept of semi-local shrink-
age functions. In the second phase, the robust tem-
poral fusion (see section 2.2), the result images of the
first phase are fused within a certain temporal sliding
window in a robust way. In both phases, the neigh-
bor images within the temporal sliding window are
motion-compensated, by first calculating the motion
field between a respective neighbor image and the cen-
ter image with the GPU-accelerated variational TV-L1
optical flow algorithm from [12] followed by warping of
the neighbor image with the motion field. In the fol-
lowing, each phase will be explained more in detail.

2.1 Hybrid wavelet denoising

The hybrid wavelet denoising algorithm is a novel
spatio-temporal transform-based approach which ex-
ploits efficiently the inherent spatial and temporal cor-
relations present in typical video content. The term hy-
brid is because as it has attributes of both 2-D (spatial)
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and 3-D (spatio-temporal) methods. For the denoising
of a certain image, it considers a fixed temporal slid-
ing window of motion-compensated neighbor images
around this image. E.g., for a sliding window of size
three the previous, current and next image is taken
into account. Firstly, each image of the sliding win-
dow is motion-compensated with respect to the center
image and its wavelet transform is calculated. We em-
ploy the stationary wavelet transform [5] which is, due
to its redundancy, better suited for denoising than the
discrete wavelet transform. Then a so-called semi-local
shrinkage function is applied on all wavelet components
of the center image. The novel concept of semi-local
shrinkage functions and their advantages over shrink-
age functions operating point-wise are explained in sec-
tion 2.1.1. Afterwards, the inverse wavelet transform
is applied to the denoised center image, yielding the
result of the first phase.

2.1.1 Semi-local shrinkage functions

A good shrinkage function should shrink wavelet
coefficients representing noise towards zero and keep
wavelet coefficients representing image structure. Con-
ventional point-wise shrinkage functions only take into
account the wavelet coefficient itself (without its spa-
tial and/or temporal neighborhood) which does not al-
low a good separation of image structure and noise and
leads to high-frequency artifacts in otherwise smooth
image regions. Therefore, we introduce the novel con-
cept of semi-local shrinkage functions which we de-
fine as follows. Let w be a coefficient at a certain
(x,y) position of a wavelet component and wsm be the
corresponding coefficient from a smoothed version of
the wavelet component (by spatial and/or temporal
smoothing). Then, the generalized formula for a semi-
local shrinkage function is defined as

v =
ϕ (|wsm|)
ε+ |wsm|w

where the function ϕ : R
+
0 �→ R

+
0 denotes a certain

shrinkage function, ε is a small positive number which
makes the denominator always positive and v is the
result (shrinked) wavelet coefficient. The function ϕ
must be monotonously increasing and has to fullfill
ϕ (t) ≤ t for all t ∈ R

+
0 . Except for these two con-

straints it can be designed freely. Note that all com-
monly employed shrinkage functions like soft, hard or
firm shrinkage (see [1]) can be easily transferred into
this framework. E.g., for soft shrinkage the equivalent
function is

ϕsoft (t) = max (t− λ, 0)

where λ is a non-negative constant. For the calcu-
lation of the smoothed wavelet component, we apply
a combined spatio-temporal smoothing procedure as
follows. Firstly, a temporal smoothing is applied by
averaging all corresponding wavelet components (e.g.,
all LH components of level 1) within the whole sliding
window. Afterwards, a spatial smoothing is applied
on the temporally smoothed wavelet component. For
the spatial smoothing, preferably an edge-preserving
smoothing method (e.g, bilateral filtering [11]) should
be employed.

Due the usage of the spatio-temporally smoothed
wavelet component wsm a much stronger shrinkage for
wavelet coefficients representing noise can be achieved.
At the same time, wavelet coefficients which represent
image structure are not impacted negatively. Further-
more, the amount of annoying high-frequency artifacts
is also reduced significantly.

2.2 Robust temporal fusion

As in the first phase, a certain temporal sliding win-
dow of motion-compensated images (here we take the
result images of phase one) is used. For calculating
the final denoised center image, the task is now to fuse
all motion-compensated images of the sliding window
in a way that is robust against motion-compensation
errors which often appear in fast-motion areas and in
occluded areas, even when a high-quality optical flow
method is used. In the following, for a certain pixel
x, let vr be its intensity in the center image (either a
scalar or vector) and vk be the corresponding intensity
in the neighbor image with index k, k = 1...m, where
m is the size of the temporal sliding window. For the
temporal fusion at a certain pixel x, we propose to em-
ploy a similarity-weighted average of all intensities vk,
where the weight for a certain intensity vk is calculated
from its similarity to the center image intensity vr.
This concept is related to the classical spatial neigh-
borhood filters like the Yaruslavsky filter [2] and the
bilateral filter [11], but with temporal instead of spatial
extent. In the following, we formalize the novel gener-
alized framework we developed for the robust temporal
fusion. Let τ : R+

0 �→ R
+
0 be a monotonously descend-

ing function which basically specifies how the intensity
deviation to the reference intensity vr is mapped to a
weighting factor. E.g., reciprocal- or exponential-like
functions of the form

τdiv (t) =
1

(t+ α)
ω

τexp (t) = e−αtω

can be used, where α and ω are positive constants.
We construct now a function η which maps a neighbor
intensity into a weighting factor, in a way which allows
for some tolerance δ in the intensity deviation as

η (vk) = τ (max (|vk − vr| − δ, 0))

By this construction with a non-negative tolerance con-
stant δ, we assure that minor intensity differences (e.g.,
due to flicker and noise) do not decrease the weighting
factor η (vk). On the other side, all intensity differ-
ences bigger than δ will decrease the weighting factor
as they indicate a motion-compensation error. The ac-
tually used function τ determines how fast the decay of
the weight is. If the values vk are vectors (which is the
case for color images), one has to adapt the formula for
η (vk) slightly by replacing the absolute value function
with some suitable vector norm. Finally, the result
vtf of the robust temporal fusion is calculated as the
weighted average of all intensities vk via the formula

vtf =
1∑m

k=1 η (vk)

m∑

k=1

η (vk) vk
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Table 1. PSNR results for the five sequences of the test dataset. In each row, the upper number gives the
PSNR of the proposed HWTF algorithm, and the lower number gives the PSNR of the CVBM3D algorithm.
The higher of the two PSNR values is marked bold.

Sequence Variant 1 Variant 2 Variant 3 Variant 4 Variant 5 Variant 6

clinicip
43.60 42.52 40.73 43.69 40.61 38.09

43.50 41.70 39.90 43.73 39.53 37.25

flowers
44.12 43.38 42.27 44.20 42.13 40.08

44.28 43.01 41.49 44.43 41.31 39.38

paprica
46.01 44.23 42.23 46.04 41.95 39.18

44.54 42.64 40.66 44.69 40.02 37.36

earth
46.01 43.64 41.45 46.15 41.26 38.46

45.25 43.34 41.79 45.39 41.21 39.15

cooking
46.69 44.41 42.21 46.71 41.79 38.87

44.76 42.92 41.23 44.76 40.64 38.29

Figure 1. From top to bottom: A region of
the original image, the region with noise added
(coarse noise, medium magnitude), result of
CVBM3D algorithm, result of the proposed
HWTF algorithm.

3 Evaluation

We evaluated the proposed video denoising algo-
rithm on a suitable dataset. Commonly used test se-
quences (foreman, flowergarden, ...) have an unreal-
istic small resolution compared to recent video cam-

eras which usually have at least HD resolution. Fur-
thermore the usual process of adding Gaussian noise
of a certain standard deviation does not reflect the
real appearance of film grain noise or digital camera
sensor noise which is signal-dependent, spatially cor-
related and not purely Gaussian. So we generated a
dataset of five clean (no apparent noise) video clips
with different content characteristics (varying amount
of texture and varying levels of motion) and with a
resolution of 1280 x 720 pixel. In order to make the
addition of noise/grain as natural as possible, we take
a noise/grain template, captured from homogenous re-
gions of a real noisy image, and use the texture synthe-
sis method from [7] to create noise with the same ap-
pearance as the noise/grain template. We use two dif-
ferent templates, the first one containing fine electronic
noise and the second containing coarse film grain. For
each noise template and for each clip, we use the
method from [7] to add signal-dependent noise in three
different magnitudes (low/medium/high). So finally
we have 7 variants from each video clip: The clean ref-
erence clip, 3 variants with fine noise added (Variant 1
- Variant 3 in Table 1) and 3 variants with coarse noise
added (Variant 4 - Variant 6 in Table 1). As the quan-
titative measure of the denoising quality, we employ
the PSNR value. We compare the proposed HWTF al-
gorithm against the CVBM3D algorithm, which is an
extension of the V-BM3D algorithm [3] for color video.
It is considered currently as the best video denoising
algorithm reported in the literature. Both algorithms
are run in several parametrizations and for each al-
gorithm the parametrization which gives the highest
PSNR is taken. The sliding window size is set to three
images for both phases of the proposed HWTF algo-
rithm, whereas the CVBM3D algorithm uses nine im-
ages.
In Table 1, the PSNR values are given for the pro-
posed HWTF algorithm (upper numbers) and for the
CVBM3D algorithm (lower numbers). One can see
that the HWTF algorithm achieves a higher PSNR for
most variants of the five test sequences, for some vari-
ants of the sequences ’paprica’ and ’cooking’ it is even
almost 2 dB higher. A visual comparison of the algo-
rithm results on the ’earth’ sequence of the test dataset
is given in Figure 1. One can see that the HWTF
algorithm is able to retain fine image structures sig-
nificantly better. In Figure 2, the algorithm result is
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Figure 2. Top: A region of the noisy image, bot-
tom: result of the proposed HWTF algorithm.
Best viewed electronically.

shown on a region of an image from the 4K ’coastguard’
video provided by Elemental Technologies1. The video
was recorded using a RED R© Epic 4K digital cinema
camera in ProRes format. One can see that digital
noise has been effectively suppressed, while image de-
tails have been preserved.
Regarding runtime, the HWTF algorithm processes
one frame in 0.7 seconds, whereas the CVBM3D al-
gorithm (Matlab implemention using C Mex library)
needs 5 seconds for one frame. The significant runtime
difference may be attributed to the lower computa-
tional complexity of the HWTF algorithm, as it em-
ploys a significantly smaller temporal sliding window
and has no expensive collaborative filtering step.

4 Conclusion

In this paper we proposed a two-phase algorithm
for film an video denoising. We employ the concept
of semi-local shrinkage function in the first phase, fol-
lowed by robust temporal fusion in the second phase.
A quantitative evaluation of the proposed algorithm
shows that the method delivers better results than the
state-of-the-art video denoising method CVBM3D, ad-
ditionally its runtime is significantly lower.

1http://www.elementaltechnologies.com/resources/

4k-test-sequences
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